

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 62 (2006) 2831-2844

Methodology for the synthesis of 1,2-disubstituted arylnaphthalenes from α-tetralones

Simon S. Moleele, Joseph P. Michael and Charles B. de Koning*

School of Chemistry, Molecular Sciences Institute, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa

Received 28 October 2005; revised 13 December 2005; accepted 5 January 2006

Available online 30 January 2006

Abstract— α -Tetralones were initially converted into 1-bromo-dihydronaphthalene-2-carbaldehydes and 1-bromo-naphthalene-2-carbaldehydes. These precursors were then subjected to Suzuki coupling reactions to afford 1,2-disubstituted aryldihydronaphthalenes and 1,2-disubstituted arylnaphthalenes, respectively. The former products were oxidized with DDQ to give 1,2-disubstituted arylnaphthalenes.

© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis of aromatic compounds containing biaryl axes continues to be important as a result of the biological activities associated with the biaryl natural products¹ as well as their use as ligands in transition metal catalysed reactions.

For example, the naturally occurring compound (*S*)gossypol **1** (Fig. 1) contains a biaryl axis. Restricted rotation about this axis imparts chirality to the molecule. Pharmacologically it is known to be an oral antifertility agent, and it shows potential for the treatment of HIV infections, diabetic complications and cancer.² Recent work has also shown that the phenyl-naphthalene core is effective in thyromimetics^{3a} and shows high ceramide-mediated proapoptotic activity on human breast cancer cells.^{3b}

Apart from their interesting biological activity, biaryl naphthalene compounds also find application as chiral catalysts. The first and most frequently used chiral phosphine ligand is BINAP **2** (Fig. 1). This is illustrated by the work of Noyori who has shown that the ruthenium complexes of **2** are capable of effecting asymmetric hydrogenations and have even found industrial applications.^{4,5}

The atropisomers of (1,1'-binaphthyl)-2,2'-diol 3 and its derivatives (Fig. 1) are widely used in asymmetric synthesis, either as ligands or as chiral auxiliaries. For example,

0040–4020/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2006.01.013

the binaphthol derivative **4** has been used as a chiral ligand in the copper-catalysed Michael addition of dialkylzinc reagents to cyclic α,β -unsaturated ketones.⁶ In addition, an important contribution using binaphthols in organic synthesis has come from the group of Shibasaki^{7,8} in that it has been shown that a number of characterised heterobimetallic asymmetric binaphthols are capable of catalyzing a variety of reactions.

General methods for the synthesis of biaryl compounds include the use of oxidative coupling methods.⁹ Otherwise, traditional methods for the assembly of the biaryl axis such as the Suzuki–Miyaura^{10,11} and Stille reactions are used.¹² For the synthesis of suitably substituted biaryl compounds

Figure 1.

Keywords: Suzuki-Miyaura coupling reactions; Aromatization; Arylnaphthalenes; α -Tetralone.

^{*} Corresponding author. Tel.: +27 11 7176724; fax: +27 11 7176749; e-mail: dekoning@aurum.chem.wits.ac.za

both of these methods depend on the synthesis of suitably substituted aromatic compounds and in the case of arylnaphthalenes the synthesis depends on the availability of suitably substituted naphthalenes.¹³ For example, the arylnaphthalene **5** has been made by the coupling of tolylboronic acid **6** and **7** (Scheme 1).¹⁴

Scheme 1.

Our research group has been involved in the synthesis of biaryl compounds and naphthalenes¹⁵ and in this paper we report on the use of α -tetralones as suitable commercially available substrates for the synthesis of simple arylnaphthalenes. We show that α -tetralones can be used as 'substitutes' for naphthalenes as these are readily converted into the naphthalene portion of the arylnaphthalene. Related results on the use of tetralones for building substituted naphthalenes have been reported by two other research group.^{3,16}

2. Results and discussion

Following literature protocol, readily available α -tetralone 8 was converted into the known dihydronaphthalene 9 in good yield as shown in Scheme 2.^{17,18} Using our well-developed Suzuki-Miyaura reaction conditions we then attempted to produce a number of aryldihydronaphthalenes. Reaction of 9 with catalytic $Pd(PPh_3)_4$ in the presence of boronic acids 10a-d and aqueous Na₂CO₃ and DME afforded the desired Suzuki coupling products 11a-d in good to excellent yields.¹⁹ Subsequently the products were then reduced to alcohols 12a-d using sodium borohydride in ethanol. The resultant alcohols 12a-d were protected as their esters using acetic anhydride and pyridine to give 13a-d. Finally, all that was required was the oxidation of dihydronaphthalenes 13a-d to afford the desired biaryl naphthalenes. The use of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in CH₂Cl₂ afforded good yields of the desired arylnaphthalenes 14a-d from 13a-d demonstrating that tetralones can be used as substitutes for naphthalenes.

Dimethoxybromodihydronaphthalene-2-carbaldehyde **16** was synthesized from a different tetralone substrate, 6,7dimethoxytetralone **15**, using DMF and potassium tribromide in CH_2Cl_2 in a similar manner to that described for tetralone **8**. As shown in Scheme 2 the exposure of **16** to boronic acids **10a–d** under aqueous Suzuki coupling reaction conditions in the presence of $[Pd(PPh_3)_4]$ gave

Scheme 2. Reagents and Conditions: (i) DMF, PBr₃, CH_2Cl_2 , reflux, R=H, 70%; R=OMe, 63%; (ii) cat. Pd(PPh₃)₄, aqueous Na₂CO₃, boronic acid 10, DME/EtOH, reflux; (iii) NaBH₄, EtOH, rt; (iv) Ac₂O, pyridine, reflux; (v) DDQ, CH₂Cl₂, reflux; for yields see Table 1.

aryl 6,7-dimethoxycarbaldehydes **17a–d** in good yields. Reduction of the carbaldehydes **17a–d** using sodium borohydride in ethanol gave dimethoxydihydronaphthalene alcohols **18a–d** in very good yields. As in the previous series, the resultant alcohols were then protected as their esters to give **19a–d**. The subsequent dimethoxydihydronaphthalene esters were then dehydrogenated as before to the envisaged substituted biaryl dimethoxynaphthalenes **20a–d** using DDQ in CH_2Cl_2 and the products were obtained in satisfactory yields (Table 1).

It has to be mentioned that an attempt was made to aromatize some of the dihydronaphthalene carbaldehydes **11a–d** using DDQ as reagent in CH_2Cl_2 , as was done with the dihydronaphthalene esters. Unfortunately, in all cases only the starting material was obtained or uncharacterizable products were obtained.

In order to try and decrease the number of steps required to obtain the desired biaryl naphthalenes, the aromatization reaction was attempted on the related alcohols **12a–c**. (Scheme 2). Three of the dihydronaphthalene alcohols **12a–c** were aromatized using this methodology to afford **21a–c** in good yields.

As an alternative to produce the same arylnaphthalene alcohols we decided to investigate aromatization of the initial dihydronaphthalenes with alternative reagents. After

Table 1. Yields for Scheme 2

Entry	Ar	%		%	Entry	%	Entry	%	Entry	%
9→11a	3,4,5-(MeO)C ₆ H ₂	83	11a→12a	100	$12a \rightarrow 13a$	98	13a→14a	78	12a→21a	82
$9 \rightarrow 11b$	Naphthyl	93	$11b \rightarrow 12b$	94	$12b \rightarrow 13b$	94	$13b \rightarrow 14b$	95	$12b \rightarrow 21b$	79
$9 \rightarrow 11c$	Ph	100	$11c \rightarrow 12c$	94	$12c \rightarrow 13c$	82	$13c \rightarrow 14d$	93	$12c \rightarrow 21c$	77
9→11d	2-MePh	78	$11d \rightarrow 12d$	94	$12d \rightarrow 13d$	94	$13d \rightarrow 14d$	100		
16→17a	3.4.5-(MeO)C ₆ H ₂	88	17a→18a	87	$18a \rightarrow 19a$	80	$19a \rightarrow 20a$	74		
16→17b	Naphthyl	87	$17b \rightarrow 18b$	100	$18b \rightarrow 19b$	89	$19b \rightarrow 20b$	78		
16→17c	Ph	83	$17c \rightarrow 18c$	100	$18c \rightarrow 19c$	88	$19c \rightarrow 20c$	100		
$16 \rightarrow 17d$	2-MePh	98	$17d \rightarrow 18d$	87	$18d \rightarrow 19d$	88	$19d \rightarrow 20d$	78		

extensive experimentation with 9 it was found that careful treatment of the substrate with selenium powder in a small amount of DMSO for 5 min at 170 °C resulted in acceptable yields of the desired product 22. The related monomethoxydihydronaphthalene 23 also gave the desired naphthalene 24 in good yield (72%). The remaining steps for the production of a variety of 1-arylnaphthalenes were straightforward. Treatment of both 22 and 24 with the boronic acids 10a–d gave the desired naphthalenes 25a–d and 26a–d with an aldehyde substituent in the 2-position. All the aldehydes were then reduced with NaBH₄ to give alcohols 21a–d as well as the monomethoxynaphthalenes 27a–d (Table 2, Scheme 3).

Table 2. Yields for Scheme 3

Entry	Ar	%	Entry	%
$22 \rightarrow 25a$	3,4,5-(MeO)C ₆ H ₂	94	$25a \rightarrow 21a$	82
$22 \rightarrow 25b$	Naphthyl	89	$25b \rightarrow 21b$	93
$22 \rightarrow 25c$	Ph	87	$25c \rightarrow 21c$	91
$22 \rightarrow 25d$	2-MePh	94	$25d \rightarrow 21d$	95
24→26a	3,4,5-(MeO)C ₆ H ₂	80	$26a \rightarrow 27a$	89
$24 \rightarrow 26b$	Naphthyl	74	$26b \rightarrow 27b$	95
$24 \rightarrow 26c$	Ph	90	$26c \rightarrow 27c$	100
$24 \rightarrow 26d$	2-MePh	71	$26d \rightarrow 27d$	93

Scheme 3. Reagents and Conditions: (i) Se powder, DMSO, 170 °C, R = H, 69%; R = OMe, 72%; (ii) cat. Pd(PPh₃)₄, aqueous Na₂CO₃, boronic acid 10, DME/EtOH, reflux; (iii) NaBH₄, EtOH, rt; for yields see Table 2.

In conclusion, we have developed a new straight-forward method for the synthesis of arylnaphthalenes where the regiochemistry of the product is defined unambiguously from the tetralone. This eliminates the difficulties of preparing 1-bromonaphthalenes by direct bromination of naphthalenes, as these reactions generally afford mixtures of products, particularly if the naphthalene is substituted. For example, bromination of 6,7-dimethoxy-2-naphthaldehyde would not afford **24**.

Specifically, we have been able to develop a two step procedure for the synthesis of aryldihydronaphthalenes **11a–d** and **17a–d** from tetralones **8** and **15**, which can be converted into the corresponding arylnaphthalenes. In addition, a two step procedure for the synthesis of 1-bromo-2-formylnaphthalenes (**22** and **24**) has been developed. These products can be utilized in Suzuki– Miyaura reactions to afford biaryl compounds.

Future work will entail the introduction of an oxygen substituent in the *ortho* position of the boronic acid. This will provide arylnaphthalenes such as **28** with two oxygen containing substituents *ortho* to the biaryl axis. These will be potential ligands for metal catalyzed reactions.

3. Experimental

3.1. General

All reagents used were Analytical Grade Reagents from Fluka and Aldrich. n-BuLi was obtained from Aldrich and used as supplied. THF was dried by distillation from sodium wire/benzophenone, DMF by distillation from CaH₂. All other solvents were BDH/HP high purity grade and distilled before use. Thin-layer chromatography was carried out on Macherey-Nagel Alugram Sil G/UV₂₅₄ Plates, pre-coated with 0.25 mm silica gel 60. Detection was done under ultra violet light at 254 nm. For column chromatography, Macherey-Nagel silica gel (32-63 µm) was used, with gel mass 30 times that of sample, eluting with the stated solvent mixtures. Melting points were determined on a Reichert hotstage microscope. Infrared spectra were run on the Bruker Vector 22 Fourier Transform spectrometer. Absorption maxima are reported in wavenumbers (cm^{-1}) , with s = strong, m = medium and w = weak. NMR spectroscopic analysis was done on an Ultrashield 300 MHz/54 Bohr magnet. The frequency at which ¹H NMR spectra were reported was 300.131 MHz (rounded to 300 MHz) using

tetramethylsilane at 0.000 ppm as a standard. These spectra are reported as parts per million (ppm), with s=singlet, d=doublet, dd=doublet of a doublet, t=triplet, dt=doublet of a triplet, m=multiplet. The ¹³C NMR spectra were reported at a frequency of 75.475 MHz (rounded to 75 MHz) using CDCl₃ at 77.00 ppm as a standard.

3.1.1. Bromo-3,4-dihydronaphthalene-2-carbaldehyde 9. Dry DMF (8.02 mL, 103.2 mmol) in dry CH₂Cl₂ (50 mL) was cooled to 0 °C and phosphorus tribromide (8.00 mL, 89.5 mmol) was added drop-wise. The mixture was stirred at 0 °C for 1 h during which time a pale yellow suspension was formed. A solution of α-tetralone 8 (4.58 mL, 5.03 g, 34.4 mmol) in dry CH_2Cl_2 (90 mL) was added and the mixture was heated under reflux for 1 h. After cooling to 0 °C, aqueous NaHCO₃ was added slowly until the effervescence had subsided. Extraction of the organic material into CH_2Cl_2 (3×100 mL) was followed by drying the organic layer (MgSO₄). The solution was filtered through a Celite plug and evaporation of the excess solvent resulted into brown oil. Column chromatography eluting with 30% ethyl acetate/hexane gave the product 9 as a brown solid (5.71 g, 70%) with identical spectroscopic data to that described in the literature.^{17,18}

3.1.2. 1-Bromo-6,7-dimethoxy-3,4-dihydronaphthalene-2-carbaldehyde 16. Dry DMF (0.56 mL, 7.27 mmol) in dry CH₂Cl₂ (20 mL) was cooled to 0 °C and phosphorus tribromide (0.60 mL, 6.30 mmol) was added drop-wise. The mixture was stirred at 0 °C for 2 h and a pale yellow suspension was formed. A solution of 6,7-dimethoxy-atetralone 15 (0.50 g, 2.42 mmol) in dry CH₂Cl₂ (30 mL) was added and the mixture was stirred at reflux for 12 h. After cooling to 0 °C, aqueous NaHCO₃ was added slowly until the effervescence had subsided. Extraction of the organic material into CH_2Cl_2 (3×100 mL) was followed by drying of the organic layer (MgSO₄), filtration through a Celite plug and evaporation of the excess solvent, which resulted into a yellow oil. Column chromatography (30% ethyl acetate/hexane) gave 16 as a yellow crystalline solid (0.45 g, 63%). This decomposed on standing and was therefore used immediately. IR ν_{max} (cm⁻¹) 1659 (s, C=O stretch), 1601, 1589, 1549 (s, C=C stretch); ¹H NMR δ / ppm 10.19 (1H, s, CHO), 7.42 (1H, s, Ar-H), 6.71 (1H, s, Ar-H), 3.95 (3H, s, OMe), 3.94 (3H, s, OMe), 2.80-2.75 (2H, m, CH₂), 2.64–2.58 (2H, m, CH₂); ¹³C NMR δ/ppm 23.0 (CH₂), 27.1 (CH₂), 56.1 (OCH₃), 56.2 (OCH₃), 110.5 (CH), 112.1 (CH), 125.6 (C), 132.4 (C), 133.0 (C), 139.2 (C), 147.7 (C), 151.5 (C), 192.9 (CHO); MS (EI) *m/z* (%): 298 (M⁺⁸¹Br, 94), 296 (M⁺⁷⁹Br, 100), 286 (17), 206 (50), 265 (22), 189 (53), 188 (43), 178 (24), 174 (19), 150 (42), 145 (35), 115 (39), 102 (22), 63 (18); HRMS calculated for $C_{13}H_{13}O_3^{79}Br M^+$ 296.0048, found 296.0019.

3.1.3. 3,4,5-Trimethoxyphenylboronic acid 10a. To a stirred solution of 1-bromo-3,4,5-trimethoxybenzene (0.50 g, 2.02 mmol) in THF (30 mL) at -78 °C under nitrogen was added *n*-BuLi (1.56 mL, 2.22 mmol) dropwise. The reaction mixture was stirred at -78 °C for 30 min before trimethylborate (0.68 mL, 6.07 mmol) was added and the mixture stirred for another 30 min at -78 °C. The subsequent mixture was then allowed to warm to room temperature before being acidified with aqueous 10% HCl.

Extraction of the organic material into CH_2Cl_2 (3×100 mL) was followed by drying the organic layer (MgSO₄) before being concentrated under reduced pressure to give a cream white semi-solid **10a** (0.43 g, 100%) that was not purified further.

3.1.4. 1-Naphthylboronic acid 10b. In a similar manner to that described above bromonaphthalene (0.50 g, 2.41 mmol) in THF (40 mL) was converted into boronic acid **10b** (0.26 g, 63%) using *n*-BuLi (1.90 mL, 12.66 mmol) and B(OMe)₃ (0.81 mL, 7.24 mmol).

3.1.5. Phenylboronic acid 10c. Boronic acid **10c**, a cream white semi-solid (1.47 g, 89%) was synthesized from bromobenzene (1.43 mL, 13.58 mmol), *n*-BuLi (1.87 mL, 14.9 mmol) and B(OMe)₃ (1.96 mL, 4.07 mmol) in a similar way as described above.

3.1.6. *o***-Tolylboronic acid 10d.** Using the same procedure as described above 2-bromotoluene (1.40 mL, 11.63 mmol) was converted to boronic acid **10d**, a white solid (1.34 g, 85%).

3.1.7. 1-(3,4,5-Trimethoxyphenyl)-3,4-dihydronaphthalene-2-carbaldehyde 11a. To $[Pd(PPh_3)_4]$ (0.22 g, 0.19 mmol) was added a deoxygenated solution of 9 (0.46 g, 1.940 mmol) in DME (10 mL). This was followed by a deoxygenated solution of boronic acid **10a** (0.62 g, 2.91 mmol) in ethanol (5 mL), and then a deoxygenated solution of aqueous sodium carbonate (1.77 g, 16.5 mmol in 8.2 mL water). The resultant mixture was heated under reflux under nitrogen for 46 h over which time the solution turned deep red. After allowing the mixture to cool to room temperature, it was quenched with water (50 mL) and the organic material was then extracted with CH₂Cl₂ $(3 \times 100 \text{ mL})$. The resultant organic extracts were combined, dried (MgSO₄), filtered through a Celite plug and the excess solvent removed using a rotary evaporator. The subsequent oil was purified by column chromatography (30% ethyl acetate/hexane) to afford the desired product 11a as a brown solid (4.80 g, 83%). Mp=112-114 °C; IR v_{max} (cm⁻¹) 1659 (s, C=O stretch), 1575, 1564 (s, C=C stretch); ¹H NMR δ /ppm 9.65 (1H, s, CHO), 7.26–7.31 (2H, m, 2×ArH), 7.19–7.16 (1H, m, ArH), 6.99–6.96 (1H, m, ArH), 6.51 (2H, s, 2×ArH), 3.93 (3H, s, OCH₃), 3.84 (6H, s, 2×OCH₃), 2.94–2.89 (2H, m, CH₂), 2.71–2.65 (2H, m, CH₂); ¹³C NMR δ/ppm 20.2 (CH₂), 27.5 (CH₂), 56.2 (2×OCH₃), 60.9 (OCH₃), 107.7 (2×ArCH), 126.7 (CH), 127.8 (CH), 128.3 (CH), 130.2 (CH), 130.7 (C), 134.2 (C), 134.8 (C), 138.0 (C), 138.5 (C), 153.1 (2×C), 154.2 (C), 193.4 (CHO); MS (EI) *m*/*z* (%): 325 (M+1, 22), 324 (M⁺, 100), 293 (22), 281 (52), 265 (18), 168 (31), 153 (25), 51 (11); HRMS calculated for $C_{20}H_{20}O_4 M^+$ 324.1362, found 324.1362.

3.1.8. 1-(1-Naphthyl)-3,4-dihydronaphthalene-2-carbaldehyde 11b. Using the same procedure as outlined above 11b, a light brown oil (0.55 g, 93%) was obtained from a mixture of [Pd(PPh₃)₄] (0.25 g, 0.21 mmol), dihydronaphthalene 9 (0.50 g, 2.11 mmol), boronic acid 10b (0.54 g, 3.16 mmol, in ethanol 5 mL) and aqueous sodium carbonate (1.90 g, 17.9 mmol in 8.9 mL of water). IR ν_{max} (cm⁻¹) 1660 (s, C=O stretch), 1607, 1561 (m, C=C stretch); ¹H NMR δ /ppm 9.40 (1H, s, CHO), 7.92 (2H, t,

2835

 $J=8.8 \text{ Hz}, 2 \times \text{ArH}), 7.59-7.34 (5H, m, 5 \times \text{ArH}), 7.31-7.24 (2H, m, 2 \times \text{ArH}), 6.95 (1H, t, J=7.7 \text{ Hz}, \text{ArH}), 6.64 (1H, d, J=7.7 \text{ Hz}, \text{ArH}), 3.02-3.08 (2H, m, CH_2), 2.84-2.94 (1H, m, CH), 2.66-2.77 (1H, m, CH); ^{13}C NMR \delta/\text{ppm 20.1 (CH}_2), 27.7 (CH_2), 125.1 (CH), 125.9 (CH), 126.3 (CH), 126.8 (CH), 126.9 (CH), 127.9 (CH), 128.1 (CH), 128.4 (CH), 128.4 (CH), 128.9 (CH), 130.2 (CH), 132.6 (C), 132.9 (C), 133.5 (C), 135.0 (C), 135.8 (C), 138.1 (C), 153.0 (C), 193.0 (CHO); MS (EI)$ *m*/*z*(%): 285 (M+1, 62), 284 (M⁺, 100), 283 (89), 268 (27), 265 (39), 256 (62), 255 (89), 254 (33), 253 (68), 252 (73), 250 (27), 241 (27), 240 (43), 239 (67), 228 (33), 226 (22), 165 (21), 129 (22), 128 (73), 127 (39), 126 (42), 119 (22), 113 (20); HRMS calculated for C₂₁H₁₆O M⁺ 284.1201, found 284.1202.

3.1.9. 1-Phenyl-3,4-dihydronaphthalene-2-carbaldehyde 11c. In a similar manner as described above a mixture of $[Pd(PPh_3)_4]$ (0.25 g, 0.21 mmol), dihydronaphthalene 9 (0.50 g, 2.11 mmol), boronic acid 10c (0.39 g, 3.16 mmol, in ethanol 7 mL) and aqueous sodium carbonate (1.90 g, 17.9 mmol in 8.9 mL of water) was used to synthesize 11c as a light brown crystalline solid (0.49 g, 100%). Mp=68–71 °C; IR ν_{max} (cm⁻¹) 1658 (s, C=O stretch), 1607, 1596 (m, C=C stretch); ¹H NMR δ /ppm 9.63 (1H, s, CHO), 7.50–7.47 (3H, m, 3×ArH), 7.35–7.30 (4H, m, 4× ArH), 7.18–7.12 (1H, dt, J=7.8, 1.9 Hz, ArH), 6.90 (1H, d, J=7.7 Hz, ArH), 2.97–2.92 (2H, m, CH₂), 2.76–2.71 (2H, m, CH₂); ¹³C NMR δ/ppm 20.2 (CH₂), 27.5 (CH₂) 126.6 (CH), 127.8 (CH), 128.2 (2×CH), 128.4 (2×CH), 130.2 (C), 130.4 (2×C), 134.3 (C), 135.0 (C), 135.2 (ArC), 138.6 (C), 154.4 (ArC), 193.4 (CHO); MS (EI) *m/z* (%): 234 (M⁺, 100), 233 (52), 205 (73), 202 (66), 189 (26), 178 (35), 165 (26), 128 (49), 127 (27), 78 (25), 29 (31); HRMS calculated for C₁₇H₁₄O M⁺ 234.1045, found 234.1045.¹⁹

3.1.10. 1-(o-Tolyl)-3,4-dihydronaphthalene-2-carbaldehyde 11d. Similarly [Pd(PPh₃)₄] (0.24 g, 0.210 mmol), a solution of dihydronaphthalene 9 (0.50 g, 2.11 mmol) in DME (10 mL), a solution of boronic acid 10d (0.43 g, 3.16 mmol) in ethanol (5 mL), and a solution of aqueous sodium carbonate (1.90 g, 17.9 mmol in 8.9 mL of water) was used to synthesize carbaldehyde **11d** as a yellow crystalline solid (0.41 g, 78%). Mp=59-61 °C; IR ν_{max} (cm^{-1}) 1660 (s, C=O stretch), 1606, 1599 (m, C=C stretch); ¹H NMR δ/ppm 9.48 (1H, s, CHO), 7.35–7.25 (5H, m, $5 \times \text{ArH}$), 7.16 (1H, d, J = 6.9 Hz, ArH), 7.10 (1H, dt, J =7.8, 2.4 Hz, ArH), 6.73 (1H, d, J=7.8 Hz, ArH), 2.94 (2H, t, J=8.0 Hz, CH₂), 2.83-2.73 (1H, m, CH), 2.66-2.55 (1H, CH), 2.08 (3H, s, CH₃); ¹³C NMR δ/ppm 19.6 (CH₃), 19.8 (CH₂), 27.5 (CH₂), 125.7 (CH), 126.7 (CH), 127.5 (CH), 127.9 (CH), 128.5 (CH), 130.2 (CH), 130.2 (CH), 130.5 (CH), 134.3 (C), 134.4 (C), 134.8 (C), 136.7 (C), 138.4 (C), 154.2 (C), 193.1 (CHO); MS (EI) *m/z* (%): 249 (M+1, 23), 248 (M⁺, 74), 247 (35), 233 (100), 229 (28), 215 (51), 203 (51), 202 (53); HRMS calculated for $C_{18}H_{16}O$ M⁺ 248.1201, found 248.1198.

3.1.11. 6,7-Dimethoxy-1-(3,4,5-trimethoxyphenyl)-3,4-dihydronaphthalene-2-carbaldehyde 17a. To $[Pd(PPh_3)_4]$ (0.19 g, 0.16 mmol) was added a deoxygenated solution of dihydronaphthalene **16** (0.48 g, 1.62 mmol) in DME (10 mL). This was followed by a deoxygenated solution of boronic acid **10a** (0.51 g, 2.42 mmol) in ethanol (5 mL), and then a deoxygenated solution of aqueous sodium carbonate (1.45 g, 13.7 mmol in 6.9 mL water). The resultant mixture was refluxed under nitrogen for 64 h during which time the mixture turned deep red. After allowing it to cool down to room temperature, the mixture was quenched with water (50 mL) and the organic material extracted with CH_2Cl_2 (3×100 mL). The resultant organic extracts were combined, dried (MgSO₄), and then filtered through a Celite plug and the excess solvent removed using a rotary evaporator. The subsequent oil was purified by column chromatography using 30% ethyl acetate/hexane as eluent to afford carbaldehyde 17a as a yellow crystalline solid (0.55 g, 88%). Mp=139-141 °C; IR v_{max} (cm⁻¹) 1652 (s, C=O stretch), 1603, 1581, 1556 (m, C=C stretch); ¹H NMR δ/ppm 9.59 (1H, s, CHO), 6.79 (1H, s, ArH), 6.52 $(2H, s, 2 \times ArH), 6.49 (1H, s, ArH), 3.94 (3H, s, OCH_3),$ 3.93 (3H, s, OCH₃), 3.85 (6H, s, $2 \times OCH_3$), 3.65 (3H, s, OCH₃), 2.88–2.82 (2H, m, CH₂), 2.70–2.64 (2H, m, CH₂); ¹³C NMR δ/ppm 20.9 (CH₂), 27.8 (CH₂), 56.3 (OCH₃), 56.4 (OCH_3) , 56.6 $(2 \times OCH_3)$, 61.3 (OCH_3) , 108.1 $(2 \times CH)$, 111.4 (CH), 112.4 (CH), 127.6 (C), 131.3 (C), 132.8 (C), 133.1 (C), 138.4 (C), 147.8 (C), 151.2 (C), 153.4 (2×C), 154.9 (C), 193.5 (CHO); MS (EI) *m*/*z* (%): 385 (M+1, 27), 384 (M⁺, 100), 372 (52), 371 (31), 370 (45), 369 (31), 368 (93), 366 (24), 353 (30), 343 (39), 337 (32), 195 (20), 181 (20), 28 (70); HRMS calculated for $C_{22}H_{24}O_6$ M⁺ 384.1573, found 384.1573.

3.1.12. 6,7-Dimethoxy-1-(1-naphthyl)-3,4-dihydronaphthalene-2-carbaldehyde 17b. Using the same procedure as outlined above, a mixture of [Pd(PPh₃)₄] (0.12 g, 0.10 mmol), dihydronaphthalene **16** (0.30 g, 1.01 mmol), boronic acid 10b (0.26 g, 1.51 mmol, in ethanol 5 mL) and aqueous sodium carbonate (0.91 g, 8.58 mmol in 4.5 mL of water) was used to synthesize carbaldehyde 17b as a light brown oil (0.28 g, 87%). IR ν_{max} (cm⁻¹) 1652 (s, C=O stretch), 1604, 1557 (s, C=C stretch); ¹H NMR δ /ppm 9.44 (1H, s, CHO), 7.84 (2H, t, J=9.0 Hz, $2 \times ArH$), 7.51–7.27 (5H, m, 5×ArH), 6.74 (1H, s, ArH), 6.07 (1H, s, ArH), 3.84 (3H, s, OCH₃), 3.26 (3H, s, OCH₃), 2.94–2.76 (3H, m, CH₂+CH), 2.67–2.56 (1H, m, CH); ¹³C NMR δ /ppm 20.7 (CH₂), 27.5 (CH₂), 55.8 (OCH₃), 55.9 (OCH₃), 110.9 (CH), 111.6 (CH), 124.9 (CH), 125.9 (CH), 126.3 (CH), 126.7 (CH), 127.6 (C), 128.3 (CH), 128.3 (CH), 128.8 (CH), 132.2 (C), 132.5 (C), 133.0 (C), 133.4 (C), 133.9 (C), 147.4 (C), 150.7 (C), 153.2 (C), 192.7 (CHO); MS (EI) m/z (%): 345 $(M+1, 63), 344 (M^+, 100), 315 (49), 313 (22), 262 (50),$ 239 (27), 232 (24), 226 (21), 205 (31), 189 (23), 128 (79), 119 (29), 115 (24), 85 (35), 83 (52); HRMS calculated for C₂₃H₂₀O₃ M⁺ 344.1412, found 344.1412.

3.1.13. 6,7-Dimethoxy-1-phenyl-3,4-dihydronaphthalene-2-carbaldehyde 17c. In a similar manner as described above [Pd(PPh₃)₄] (0.12 g, 0.10 mmol), dihydronaphthalene **16** (0.30 g, 1.01 mmol), boronic acid **10c** (0.18 g, 1.51 mmol, in ethanol 5 mL) and aqueous sodium carbonate (0.91 g, 8.58 mmol in 4.3 mL of water) afforded **17c** as a yellow solid (0.22 g, 83%). Mp=114–117 °C; IR ν_{max} (cm⁻¹) 1650 (s, C=O stretch), 1605, 1557 (s, C=C stretch); ¹H NMR δ /ppm 9.53 (1H, s, CHO), 7.48–7.45 (3H, m, 3×ArH), 7.32–7.29 (2H, m, 2×ArH), 6.81 (1H, s, ArH), 6.39 (1H, s, ArH), 3.95 (3H, s, OCH₃), 3.61 (3H, s, OCH₃), 2.90–2.85 (2H, m, CH₂), 2.72–2.68 (2H, m, CH₂); ¹³C NMR δ/ppm 20.4 (CH₂), 27.4 (CH₂), 55.9 (2×OCH₃), 110.9 (CH), 111.9 (CH), 127.1 (C), 128.4 (2×CH), 128.6 (CH), 130.4 (2×CH), 132.4 (C), 132.6 (C), 135.4 (C), 147.2 (C), 150.6 (C), 154.6 (C), 192.9 (CHO); MS (EI) *m*/*z* (%): 295 (M+1, 26), 294 (M⁺, 100), 293 (21), 265 (22), 189 (15), 178 (19); HRMS calculated for C₁₉H₁₈O₃ M⁺ 294.1256, found 294.1256.

3.1.14. 6,7-Dimethoxy-1-(o-tolyl)-3,4-dihydronaphtha**lene-2-carbaldehyde 17d.** Similarly [Pd(PPh₃)₄] (0.20 g, 0.11 mmol), dihydronaphthalene 16 (0.50 g, 1.68 mmol) in DME (10 mL), boronic acid 10d (0.36 g, 2.52 mmol, in ethanol 10 mL) and aqueous sodium carbonate (1.56 g, 14.30 mmol in 7.4 mL of water) afforded carbaldehyde 17d as a light brown oil (0.51 g, 98%). IR ν_{max} (cm⁻¹) 1656 (s, C=O stretch), 1606 (m, C=C stretch); ¹H NMR δ /ppm 9.41 (1H, s, CHO), 7.35-7.25 (3H, m, 3×ArH), 7.16 (1H, d, J=7.4 Hz, ArH), 6.79 (1H, s, ArH), 6.24 (1H, s, ArH), 3.93 (3H, s, OCH₃), 3.57 (3H, s, OCH₃), 2.90–2.83 (2H, m, CH₂), 2.78-2.73 (1H, m, CH), 2.64-2.55 (1H, m, CH), 2.08 (3H, s, CH₃); ¹³C NMR δ/ppm 19.6 (CH₃), 19.9 (CH₂), 27.4 (CH₂), 55.9 (2×OCH₃), 110.9 (CH), 111.0 (CH), 125.7 (CH), 126.9 (C), 128.5 (CH), 130.2 (CH), 130.4 (CH), 132.4 (C), 132.5 (C), 134.9 (C), 136.6 (C), 147.6 (C), 150.7 (C), 154.5 (C), 192.8 (CHO); MS (EI) m/z (%): 308 (M⁺, 100), 249 (16), 108 (31), 58 (20); HRMS calculated for $C_{20}H_{20}O_3 M^+$ 308.1412, found 308.1396.

3.1.15. [1-(3,4,5-Trimethoxyphenyl)-3,4-dihydronaphthalen-2-yl]methanol 12a. To a solution of carbaldehyde 11a (0.51 g, 1.57 mmol) in ethanol (30 mL) was added NaBH₄ (0.07 g, 1.96 mmol). The reaction mixture was stirred at room temperature for 2 h after which time it turned cream white. The mixture was then extracted with CH₂Cl₂ $(3 \times 100 \text{ mL})$. The organic extracts were combined, dried (MgSO₄), and then filtered through a Celite plug and concentrated in vacuo. The subsequent colourless oil was purified by column chromatography using 30% ethyl acetate/hexane as eluent to afford 12a as a white crystalline solid (0.51 g, 100%). Mp=115-116 °C; IR ν_{max} (cm⁻¹) 3421 (m, broad, OH stretch), 1583, 1507 (s, C=C stretch); ¹H NMR δ /ppm 7.17–7.02 (3H, m, 3×ArH), 6.72 (1H, dd, J=7.3, 1.0 Hz, ArH), 6.39 (2H, s, 2×ArH), 4.12 (2H, s, CH₂OH), 3.89 (3H, s, OCH₃), 3.80 (6H, s, 2×OCH₃), 2.90 (2H, dd, J=8.4, 7.6 Hz, CH₂), 2.54 (2H, dd, J=8.4, 7.5 Hz, CH₂), 1.85 (1H, s, CH₂OH); ¹³C NMR δ/ppm 25.1 (CH₂), 28.1 (CH₂), 55.9 (2×OCH₃), 60.8 (OCH₃), 63.5 (CH₂OH), 106.9 (2×CH), 126.1 (CH), 126.2 (CH), 126.8 (CH), 127.1 (CH), 133.9 (C), 135.4 (C), 135.8 (C), 135.9 (C), 136.8 (C), 153.0 (2×C), (one quaternary carbon missing); MS (EI) m/z(%): 327 (M+1, 22), 326 (M⁺, 100), 297 (25), 295 (27) 181 (10), 168 (24), 165 (14), 129 (21); HRMS calculated for $C_{20}H_{22}O_4 M^+$ 326.1518, found 326.1519.

3.1.16. [1-(1-Naphthyl)-3,4-dihydronaphthalen-2yl]methanol 12b. Similarly using NaBH₄ (0.05 g, 1.32 mmol) in EtOH (10 mL) carbaldehyde 11b (0.30 g, 1.06 mmol) was reduced to alcohol 12b, a cream white semi-solid (0.29 g, 94%). IR ν_{max} (cm⁻¹) 3384 (s, broad, OH stretch), 1648, 1588, 1576 (m, C=C stretch); ¹H NMR δ /ppm 7.87 (2H, t, J=7.3 Hz, 2×ArH), 7.68 (1H, d, J=8.5 Hz, ArH), 7.54–7.43 (2H, m, 2×ArH), 7.38–7.29 (2H, m, 2×ArH), 7.24–7.20 (1H, m, ArH), 7.07–7.12 (1H, m, ArH), 6.90 (1H, t, J=7.5 Hz, ArH), 6.41 (1H, d, J=7.7 Hz, ArH), 3.92 (2H, s, CH₂OH), 3.08–3.02 (2H, m, CH₂), 2.73–2.65 (2H, m, CH₂); ¹³C NMR δ /ppm 25.2 (CH₂), 28.4 (CH₂), 63.8 (CH₂OH), 125.5 (CH), 125.7 (CH), 125.9 (CH), 126.1 (CH), 126.3 (CH), 126.4 (CH), 126.9 (CH), 127.2 (CH), 127.5 (CH), 127.7 (CH), 128.3 (CH), 132.6 (C), 133.7 (C), 133.9 (C), 135.3 (C), 135.9 (C), 137.7 (C), (one quaternary carbon missing); MS (EI) m/z (%): 286 (M⁺, 21), 268 (32), 267 (45), 255 (41), 253 (62), 251 (77), 249 (19), 239 (24), 238 (64), 229 (19), 228 (24), 225 (31), 215 (29), 165 (28), 152 (21), 141 (36), 129 (50), 128 (100), 127 (52), 115 (55), 77 (21), 31 (42); HRMS calculated for C₂₁H₁₈O M⁺ 286.1358, found 286.1356.

3.1.17. (1-Phenyl-3,4-dihydronaphthalen-2-yl)methanol **12c.** Using the same procedure as outlined above, NaBH₄ (0.03 g, 0.19 mmol) in EtOH (10 mL) carbaldehyde 11c (0.17 g, 0.72 mmol) afforded alcohol 12c as a yellow oil (0.16 g, 94%). IR ν_{max} (cm⁻¹) 3386 (s, broad, OH stretch), 1654, 1598 (m, C=C stretch); ¹H NMR δ/ppm 7.37–7.29 (3H, m, 3×ArH), 7.13-7.11 (3H, m, 3×ArH), 7.08-7.06 (1H, dd, J=7.3, 1.1 Hz, ArH), 6.99 (1H, t, J=7.2 Hz, ArH),6.60 (1H, d, J=7.6 Hz, ArH), 4.02 (2H, s, CH₂OH), 2.86 (2H, dd, J=8.4, 7.5 Hz, CH₂), 2.51 (2H, dd, J=8.4, 7.5 Hz, CH₂); 13 C NMR δ /ppm 25.0 (CH₂), 28.1 (CH₂), 63.3 (CH₂OH), 126.0 (CH), 126.1 (CH), 126.7 (CH), 126.9 (CH), 127.0 (CH), 128.2 (2×CH), 129.8 (2×CH), 135.5 (C), 135.8 (C), 135.9 (C), 136.1 (C), 138.3 (C); MS (EI) *m/z* (%): 237 (M+1, 20), 236 (M⁺, 100), 235 (20), 234 (62), 233 (33), 224 (24), 218 (38), 217 (36), 215 (24), 208 (36), 205 (77), 204 (25), 203 (46), 202 (52), 189 (21), 179 (26), 178 (36), 165 (23), 159 (21), 130 (23), 129 (34), 128 (20), 127 (22), 115 (35), 105 (23), 101 (23), 91 (76), 77 (26); HRMS calculated for C₁₇H₁₆O M⁺ 236.1201, found 236.1201.

3.1.18. [1-(o-Tolyl)-3,4-dihydronaphthalen-2-yl]methanol 12d. Similarly using NaBH₄ (0.05 g, 1.41 mmol) in EtOH (10 mL) carbaldehyde 11d (0.32 g, 1.13 mmol) was reduced to alcohol 12d, a white semi-solid (0.30 g, 94%). IR v_{max} (cm⁻¹) 3416 (s, broad, OH stretch), 1629 (m, C=C); ¹H NMR δ /ppm 7.26–6.99 (7H, m, 7×ArH), 6.50 (1H, d, J=7.6 Hz, ArH), 3.98 (2H, s, CH₂OH), 2.93 (2H, dd, J=8.3, 7.7 Hz, CH₂), 2.56 (2H, dd, J=8.5, 7.5 Hz, CH₂), 2.06 (3H, s, ArCH₃); ¹³C NMR δ/ppm 19.4 (CH₂), 24.9 (CH₂), 28.3 (CH₃), 63.6 (CH₂OH), 125.5 (CH), 125.8 (CH), 126.4 (CH), 126.8 (CH), 127.2 (CH), 127.4 (CH), 129.9 (CH), 130.1 (CH), 135.1 (C), 135.4 (C), 135.5 (C), 135.7 (C), 136.8 (C), 137.7 (C); MS (EI) *m*/*z* (%): 251 (M+1, 40), 250 (M⁺, 100), 235 (66), 232 (26), 219 (59), 218 (27), 217 (74), 216 (20), 215 (44), 204 (38), 203 (47), 202 (53), 179 (23), 178 (27), 159 (30), 129 (36), 128 (25), 119 (34), 115 (29), 105 (52), 101 (20), 91 (43), 43 (39); HRMS calculated for $C_{18}H_{18}O M^+$ 250.1358, found 250.1358.

3.1.19. [6,7-Dimethoxy-1-(3,4,5-trimethoxyphenyl)-3,4dihydronaphthalen-2-yl]methanol 18a. In a similar manner as described above, NaBH₄ (0.06 g, 1.72 mmol) in EtOH (10 mL) was used to reduce carbaldehyde 17a (0.53 g, 1.34 mmol) to alcohol 18a, a white semi-solid (0.46 g, 87%). IR ν_{max} (cm⁻¹) 3517 (s, broad, OH stretch), 1651 (m, C=C stretch); ¹H NMR δ /ppm 6.66 (1H, s, ArH), 6.33 (2H, s, 2' and 6'-H), 6.24 (1H, s, ArH), 4.04 (2H, s, CH₂OH), 3.83 (3H, s, OCH₃), 3.81 (3H, s, OCH₃), 3.75 (6H, s, 2×OCH₃), 3.54 (3H, s, OCH₃), 2.78 (2H, dd, J= 8.4, 7.6 Hz, CH₂), 2.46 (2H, dd, J=8.5, 7.6 Hz, CH₂); ¹³C NMR δ /ppm 25.5 (CH₂), 27.9 (CH₂), 55.9 (OCH₃), 56.1 (3×OCH₃), 60.9 (OCH₃), 63.8 (CH₂OH), 106.9 (2' and 6'-C), 110.7 (CH), 110.9 (CH), 128.5 (C), 128.6 (C), 133.6 (C), 133.9 (C), 135.8 (C), 136.9 (C), 146.9 (C), 147.9 (C), 153.4 (2×C); MS (EI) m/z (%): 387 (M+1, 63), 386 (M⁺, 100), 357 (22), 355 (44), 189 (21), 164 (18), 152 (16), 31 (12); HRMS calculated for C₂₂H₂₄O₆ M⁺ 386.1729, found 386.1729.

3.1.20. [6,7-Dimethoxy-1-(1-naphthyl)-3,4-dihydronaphthalen-2-yl]methanol 18b. Similarly NaBH₄ (0.03 g, 0.19 mmol) in EtOH (10 mL), reduced carbaldehyde 17b (0.25 g, 0.73 mmol) to alcohol 18b, obtained as a light brown oil (0.25 g, 100%). IR ν_{max} (cm⁻¹) 3481 (m, broad, OH stretch), 1604 (m, C=C stretch); ¹H NMR δ /ppm 7.76 $(2H, t, J=7.3 \text{ Hz}, 2 \times \text{ArH}), 7.58 (1H, d, J=8.4 \text{ Hz}, \text{ArH}),$ 7.42–7.31 (2H, m, 2×ArH), 7.27–7.19 (2H, m, 2×ArH), 6.67 (1H, s, ArH), 5.89 (1H, s, ArH), 3.78 (2H, s, CH₂OH), 3.77 (3H, s, OCH₃), 3.23 (3H, s, OCH₃), 2.91-2.84 (2H, m, CH₂), 2.59–2.54 (2H, m, CH₂); ¹³C NMR δ/ppm 25.3 (CH₂), 28.1 (CH₂), 55.8 (OCH₃), 55.9 (OCH₃), 63.7 (CH₂OH), 110.5 (CH), 110.9 (CH), 125.4 (CH), 125.7 (CH), 125.8 (CH), 126.1 (CH), 127.3 (CH), 127.6 (CH), 128.2 (CH), 128.8 (C), 132.5 (C), 133.4 (C), 133.6 (C), 135.5 (2×C), 135.9 (C), 146.9 (C), 147.9 (C); MS (EI) m/z (%): $347 (M+1, 43), 346 (M^+, 100), 345 (21), 344 (53),$ 330 (25), 315 (34), 239 (24), 226 (18), 215 (19); HRMS calculated for $C_{23}H_{22}O_3 M^+$ 346.1569, found 346.1569.

3.1.21. (6,7-Dimethoxy-1-phenyl-3,4-dihydronaphthalen-2-yl)methanol 18c. Using the same procedure as described above, NaBH₄ (0.03 g, 0.81 mmol) in EtOH (10 mL) reduced aldehyde 17c (0.17 g, 0.65 mmol) to alcohol **18c** obtained as a light yellow oil (0.20 g, 100%). IR ν_{max} (cm⁻¹) 3449 (m, broad, OH stretch), 1573, (m, C=C stretch); ¹H NMR δ /ppm 7.41–7.30 (3H, m, 3×ArH), 7.18–7.15 (2H, m, 2×ArH), 6.72 (1H, s, ArH), 6.19 (1H, s, ArH), 4.06 (2H, s, CH₂OH), 3.88 (3H, s, OCH₃) 3.56 (3H, s, OCH₃), 2.85 (2H, t, J=8.1 Hz, CH₂), 2.54 (2H, t, J=8.1 Hz, CH₂); ¹³C NMR δ/ppm 25.5 (CH₂), 28.0 (CH₂), 55.8 (OCH₃), 55.9 (OCH₃), 63.7 (CH₂OH), 110.8 (CH), 110.9 (CH), 127.1 (CH), 128.2 (2×CH), 128.5 (C), 128.8 (C), 129.9 (2×CH), 133.8 (C), 135.8 (C), 138.4 (C), 146.9 (C), 147.9 (C); MS (EI) *m/z* (%): 296 (M⁺, 12), 263 (14), 219 (69), 154 (43), 131 (22), 87 (23), 57 (100), 41 (23); HRMS calculated for $C_{19}H_{20}O_3 M^+$ 296.1412, found 296.1403.

3.1.22. [6,7-Dimethoxy-1-(*o*-tolyl)-3,4-dihydronaphthalen-2-yl]methanol 18d. Similarly NaBH₄ (0.05 g, 1.29 mmol) in EtOH (10 mL) was used to reduce aldehyde 17d (0.32 g, 1.04 mmol) to alcohol 18d obtained as a yellow semi-solid (0.28 g, 87%). IR ν_{max} (cm⁻¹) 3508 (m, broad, OH stretch), 1605, 1573 (m, C=C stretch); ¹H NMR δ /ppm 7.27–7.19 (3H, m, 3×ArH), 7.06 (1H, d, *J*=6.7 Hz, ArH), 6.74 (1H, s, ArH), 6.06 (1H, s, ArH), 3.97 (2H, s, CH₂OH), 3.87 (3H, s, OCH₃), 3.54 (3H, s, OCH₃), 2.89–2.84 (2H, m, CH₂), 2.57–2.52 (2H, m, CH₂), 2.06 (3H, s, ArCH₃); ¹³C NMR δ /ppm 19.5 (CH₃), 25.2 (CH₂), 28.1 (CH₂), 55.9 (OCH₃), 56.0 (OCH₃), 63.8 (CH₂OH), 110.0 (CH), 111.1 (CH), 125.8 (CH), 127.5 (CH), 128.2 (C), 128.4 (C), 130.0 (2×C), 133.5 (C), 135.0 (C), 136.7 (C), 137.8 (C), 147.2

(C), 147.9 (C); MS (EI) m/z (%): 311 (M+1, 19), 310 (M⁺, 80), 309 (23), 308 (75), 294 (33), 293 (35), 279 (56), 191 (26), 189 (26), 166 (40), 148 (100), 83 (30), 57 (38), 43 (27), 41 (22); HRMS calculated for $C_{20}H_{22}O_3$ M⁺ 310.1569, found 310.1569.

3.1.23. [1-(3,4,5-Trimethoxyphenyl)-3,4-dihydro**naphthalen-2-yl]methyl acetate 13a.** A mixture of alcohol 12a (0.38 g, 1.16 mmol), pyridine (5 mL) and acetic anhydride (5 mL) was refluxed under nitrogen for 16 h during which time the mixture turned black. After cooling to room temperature, excess solvent was removed under reduced pressure and the resultant oil purified by column chromatography using 30% ethyl acetate/hexane as eluent to afford the acetate 13a as yellow crystalline solid (0.42 g, 98%). Mp=81-83 °C; IR ν_{max} (cm⁻¹) 1734 (s, C=O stretch), 1584 (s, C=C stretch); ¹H NMR δ /ppm 7.16-7.07 $(3H, m, 3 \times ArH), 6.74 (1H, d, J = 7.3 Hz, ArH), 6.41 (2H, s, s)$ 2' and 6'-H), 4.61 (2H, s, CH₂OAc), 3.90 (3H, s, OCH₃), 3.82 (6H, s, 2×OCH₃), 2.92 (2H, dd, *J*=8.4, 7.7 Hz, CH₂), 2.46 (2H, dd, J = 8.4, 7.7 Hz, CH₂), 2.07 (3H, s, OAc); ¹³C NMR δ /ppm 20.9 (CH₂), 25.4 (OAc), 27.9 (CH₂), 56.0 (2× OCH₃), 60.8 (OCH₃), 65.6 (CH₂OAc), 106.8 (2' and 6'-C), 126.3 (CH), 126.3 (CH), 127.1 (CH), 127.2 (CH), 131.0 (C), 133.4 (C), 135.4 (C), 135.6 (C), 137.0 (C), 138.3 (C), 153.1 $(2 \times C)$, 170.9 (OCOCH₃); MS (EI) m/z (%): 369 (M+1, 11), 368 (M⁺, 51), 309 (12), 308 (18), 293 (22), 278 (33), 277 (100), 246 (17); HRMS calculated for $C_{22}H_{24}O_5 \text{ M}^+$ 368.1624, found 368.1620.

3.1.24. [1-(1-Naphthyl)-3,4-dihydronaphthalen-2yl]methyl acetate 13b. In a similar manner as described above alcohol 12b (0.25 g, 0.87 mmol) gave 13b as a yellow oil (0.27 g, 94%). IR ν_{max} (cm⁻¹) 1734 (s, C=O stretch), 1593 (m, C=C stretch); ¹H NMR δ /ppm 7.86–7.82 (2H, m, $2 \times \text{ArH}$, 7.65 (1H, d, J = 8.5 Hz, ArH), 7.52–7.42 (2H, m, 2×ArH), 7.39-7.29 (2H, m, 2×ArH), 7.18 (1H, d, J=7.3 Hz, ArH), 7.08 (1H, t, J=7.4 Hz, ArH), 6.87 (1H, t, J=7.5 Hz, ArH), 6.41 (1H, d, J=7.7 Hz, ArH), 4.42 (2H, s, CH₂OAc), 3.02 (2H, m, CH₂), 2.60–2.54 (2H, m, CH₂), 1.92 (3H, s, OAc); 13 C NMR δ /ppm 20.8 (CH₂), 25.5 (OAc), 28.2 (CH₂), 65.6 (CH₂OAc), 125.6 (CH), 125.9 (CH), 126.0 (CH), 126.1 (CH), 126.2 (CH), 126.3 (CH), 127.3 (2×CH), 127.6 (CH), 128.0 (CH), 128.4 (CH), 132.5 (C), 133.0 (C), 133.8 (C), 135.3 (C), 135.6 (C), 135.8 (C), 136.3 (C), 171.0 $(OCOCH_3); MS (EI) m/z (\%): 329 (M+1, 25), 328 (M^+, 77),$ 270 (29), 269 (100), 268 (53), 267 (56), 266 (58), 265 (74), 263 (21), 255 (41), 254 (52), 253 (99), 252 (97), 249 (22), 241 (25), 240 (31), 239 (67), 228 (25), 226 (23), 165 (23), 141 (60), 133 (20), 129 (32), 128 (29), 127 (25), 126 (51), 117 (26), 115 (28), 91 (30), 43 (63); HRMS calculated for $C_{23}H_{20}O_2$ M⁺ 328.1463, found 328.1463.

3.1.25. (1-Phenyl-3,4-dihydronaphthalen-2-yl)methyl acetate 13c. Similarly alcohol 12c (0.25 g, 1.06 mmol afforded acetate 13c as a yellow oil (0.24 g, 82%). IR ν_{max} (cm⁻¹) 1735 (s, C=O stretch), 1656, 1598 (m, C=C stretch); ¹H NMR δ /ppm 7.39–7.33 (3H, m, 3×ArH), 7.18–7.09 (5H, m, 5×ArH), 7.02 (1H, t, *J*=7.3 Hz, ArH), 6.63 (1H, d, *J*=7.6 Hz, ArH), 4.56 (2H, s, CH₂OAc), 2.92 (2H, dd, *J*=8.3, 7.7 Hz, CH₂), 2.46 (2H, dd, *J*=8.3, 7.7 Hz, CH₂), 2.04 (3H, s, OAc); ¹³C NMR δ /ppm) 20.9 (CH₂), 25.7 (OAc), 27.6 (CH₂), 65.5 (CH₂OAc), 126.2 (CH), 126.4

(CH), 127.2 (CH), 127.2 (CH), 127.3 (CH), 128.3 (2×CH), 129.9 (2×CH), 131.1 (C), 135.6 (C), 135.8 (C), 137.9 (C), 138.3 (C), 170.9 (OCOCH₃); MS (EI) m/z (%): 278 (M⁺, 55), 266 (20), 234 (22), 220 (29), 219 (100), 218 (62), 217 (62), 216 (75), 215 (76), 205 (42), 204 (55), 203 (95), 202 (92), 191 (40), 189 (41), 179 (23), 178 (51), 165 (33), 141 (26), 129 (37), 128 (31), 127 (21), 115 (44), 101 (23), 91 (89), 77 (22), 43 (73); HRMS calculated for $C_{19}H_{18}O_2 M^+$ 278.1307, found 278.1307.

3.1.26. [1-(o-Tolyl)-3,4-dihydronaphthalen-2-yl]methyl acetate 13d. Similarly alcohol 12d (0.20 g, 0.80 mmol) gave acetate **13d** as a light brown oil (0.22 g, 94%). IR ν_{max} (cm⁻¹) 1725 (s, C=O stretch), 1605, 1575 (m, C=C stretch); ¹H NMR δ/ppm 7.27–7.01 (7H, m, 7×ArH), 6.52 (1H, d, J=7.6 Hz, ArH), 4.50 (1H, d, J=14.4 Hz, one of) CH_2OAc), 4.43 (1H, d, J = 14.4 Hz, one of CH_2OAc), 2.93 $(2H, dd, J=8.4, 7.7 Hz, CH_2), 2.47 (2H, dd, J=8.4, 7.5 Hz)$ CH₂), 2.06 (3H, s, ArCH₃)^a, 2.03 (3H, s, OCOCH₃)^a, assignments with the same superscript may be interchanged; ¹³C NMR δ/ppm 19.4 (ArCH₃), 20.9 (CH₂), 25.1 (OAc), 28.1 (CH₂), 65.4 (CH₂OAc), 125.6 (CH), 125.8 (CH), 126.4 (CH), 127.1 (CH), 127.2 (CH), 127.7 (CH), 130.0 (2×CH), 131.0 (C), 135.0 (C), 135.4 (C), 136.7 (C), 137.2 (C), 137.4 (C), 170.9 (OCOCH₃); MS (EI) m/z (%): 292 (M⁺, 10), 232 (24), 217 (100), 105 (6), 91 (5), 43 (9); HRMS calculated for $C_{20}H_{20}O_2 M^+$ 292.1463, found 292.1425.

3.1.27. [6,7-Dimethoxy-1-(3,4,5-trimethoxyphenyl)-3,4dihydronaphthalen-2-yl]methyl acetate 19a. Using the same procedure as outlined above alcohol 18a (0.37 g, 0.96 mmol) afforded acetate 19a as light yellow oil (0.33 g, 80%). IR ν_{max} (cm⁻¹) 1731 (s, C=O stretch), 1583 (s, C=C stretch); ¹H NMR δ /ppm 6.73 (1H, s, ArH), 6.42 (2H, s, 2' and 6'-H), 6.32 (1H, s, ArH), 4.60 (2H, s, CH₂OAc), 3.90 (3H, s, OCH₃), 3.89 (3H, s, OCH₃), 3.82 (6H, s, $2 \times$ OCH₃), 3.62 (3H, s, OCH₃), 2.85 (2H, dd, J=8.4, 7.6 Hz, CH_2), 2.44 (2H, dd, J=8.4, 7.8 Hz, CH_2), 2.07 (3H, s, OAc); ¹³C NMR δ/ppm 20.9 (CH₂), 25.8 (OAc), 27.7 (CH₂), 55.8 (OCH₃), 55.9 (OCH₃), 56.1 (2×OCH₃), 60.9 (OCH₃), 65.8 (CH₂OAc), 106.9 (2' and 6'-C), 110.8 (CH), 110.9 (CH), 128.2 (C), 128.5 (C), 128.7 (C), 133.5 (C), 137.0 (C), 138.1 (C), 147.0 (C), 148.2 (C), 153.1 (2×C), 171.0 $(OCOCH_3)$; MS (EI) m/z (%): 352 (M⁺, 54), 188 (28), 87 (14), 57 (77), 43 (100); HRMS calculated for $C_{22}H_{24}O_4 M^+$ 352.1675, found 352.1743.

3.1.28. [6,7-Dimethoxy-1-(1-naphthyl)-3,4-dihydronaphthalen-2-yl]methyl acetate 19b. Similarly alcohol 18b (0.17 g, 0.49 mmol) afforded acetate 19b as yellow semi-solid (0.17 g, 89%). IR ν_{max} (cm⁻¹) 1730 (s, C=O stretch), 1605 (m, C=C stretch); ¹H NMR δ /ppm 7.88–7.84 (2H, m, 2×ArH), 7.65 (1H, d, J=8.4 Hz, ArH), 7.54–7.42 (2H, m, 2×ArH), 7.37–7.31 (2H, m, 2×ArH), 6.77 (1H, s, ArH), 5.99 (1H, s, ArH), 4.43 (1H, d, J=12.2 Hz, one of CH₂OAc), 4.38 (1H, d, J=12.2 Hz, one of CH₂OAc), 3.87 (3H, s, OCH₃), 3.33 (3H, s, OCH₃), 2.97–2.89 (2H, m, CH₂), 2.59–2.53 (2H, m, CH₂), 1.95 (3H, s, OAc); ¹³C NMR δ / ppm 20.8 (CH₂), 25.7 (OAc), 27.9 (CH₂), 55.8 (OCH₃), 55.9 (OCH₃), 65.6 (CH₂OAc), 110.6 (CH), 110.9 (CH), 125.4 (CH), 125.8 (2×CH), 126.0 (CH), 127.4 (CH), 127.9 (CH), 128.1 (C), 128.2 (CH), 128.5 (C), 130.5 (C), 132.3 (C), 133.6 (C), 135.5 (C), 135.9 (C), 147.0 (C), 148.1 (C), 170.9 $(OCOCH_3)$; MS (EI) m/z (%): 389 (M+1, 29), 388 (M⁺, 100), 329 (32), 328 (71), 327 (23), 298 (25), 297 (54), 239 (24), 141 (19); HRMS calculated for $C_{25}H_{24}O_4$ M⁺ 388.1675, found 388.1675.

3.1.29. (6,7-Dimethoxy-1-phenyl-3,4-dihydronaphthalen-2-yl)methyl acetate 19c. Similarly alcohol 18c (0.15 g, 0.58 mmol) gave acetate 19c as a yellow solid (0.17 g, 88%). Mp = 106 °C; IR ν_{max} (cm⁻¹); 1732 (s, C=O stretch), 1605, 1573 (m, C=C stretch); ¹H NMR δ /ppm 7.43–7.34 (3H, m, 3×ArH), 7.19–7.16 (2H, m, 2×ArH), 6.72 (1H, s, ArH), 6.20 (1H, s, ArH), 4.54 (2H, s, CH₂OAc), 3.89 (3H, s, OCH₃) 3.56 (3H, s, OCH₃), 2.85 (2H, dd, J= 8.5, 7.6 Hz, CH₂), 2.44 (2H, dd, J=8.4, 7.7 Hz, CH₂), 2.04 (3H, s, OAc); ¹³C NMR δ/ppm 20.9 (CH₂), 25.7 (CH₂), 27.7 (CH₃), 55.8 (OCH₃), 55.9 (OCH₃), 65.6 (CH₂OH), 110.8 (CH), 110.9 (CH), 127.3 (CH), 128.2 (2×CH), 128.5 (C), 128.8 (C), 129.8 (2×CH), 137.9 (C), 138.1 (C), 146.9 (C), 148.0 (2 \times C), 171.1 (OCOCH₃), (one quaternary carbon missing); MS (EI) m/z (%): 339 (M+1, 31), 338 (M⁺, 100), 336 (36), 279 (71), 278 (95), 277 (53), 248 (41), 247 (64), 245 (32), 203 (27), 189 (24), 165 (21), 91 (21), 43 (66); HRMS calculated for $C_{21}H_{22}O_4$ M⁺ 338.1518, found 338.1519.

3.1.30. [6,7-Dimethoxy-1-(o-tolyl)-3,4-dihydronaphthalen-2-yl]methyl acetate 19d. In a similar manner as described above alcohol 18d (0.28 g, 0.90 mmol) afforded acetate 19d as cream white semi-solid (0.28 g, 88%). IR ν_{max} (cm⁻¹); 1731 (s, C=O stretch), 1605, 1510 (s, C=C stretch); ¹H NMR δ /ppm 7.26–7.21 (3H, m, 3×ArH), 7.07 (1H, d, J=6.6 Hz, ArH), 6.73 (1H, s, ArH), 6.08 (1H, s, s)ArH), 4.48 (1H, d, J=12.1 Hz, one of CH₂OAc), 4.42 (1H, d, J=12.1 Hz, one of CH₂OAc), 3.88 (3H, s, OCH₃), 3.54 (3H, s, OCH₃), 2.90–2.84 (2H, m, CH₂), 2.45 (2H, dd, J= 8.7, 7.4 Hz, CH₂), 2.06 (3H, s, OAc)^a, 2.03 (3H, s, ArCH₃)^a, assignments with the same superscript may be interchanged; ¹³C NMR δ/ppm 19.3 (ArCH₃), 20.9 (CH₂), 25.4 (OAc), 27.8 (CH₂), 55.9 (2×OCH₃), 65.5 (CH₂OAc), 109.9 (CH), 110.9 (CH), 125.8 (CH), 127.6 (CH), 127.9 (C), 128.4 (C), 128.7 (C), 129.9 (CH), 130.0 (CH), 136.6 (C), 137.1 (C), 137.3 (C), 147.2 (C), 148.1 (C), 171.1 (OCOCH₃); ¹³C NMR δ/ppm 20.1 (CH₂), 27.7 (CH₂), 125.1 (CH), 125.9 (CH), 126.3 (CH), 126.76 (CH), 126.79 (CH), 127.9 (CH), 128.1 (CH), 128.39 (CH), 128.4 (CH), 128.9 (CH), 130.2 (CH), 132.6 (C), 132.9 (C), 133.5 (C), 135.0 (C), 135.8 (C), 138.1 (C), 153.0 (C), 193.0 (CHO); MS (EI) m/z (%): 353 (M+1, 24), 352 (M⁺, 40), 351 (10), 292 (53), 277 (100), 245 (33), 201 (27), 115 (27), 43 (44); HRMS calculated for C₂₂H₂₄O₄ M⁺ 352.1675, found 352.1766.

3.1.31. [1-(3,4,5-Trimethoxyphenyl)naphthalen-2-yl]methyl acetate 14a. To a solution of acetate 13a (0.50 g, 1.46 mmol) in dry CH₂Cl₂ (30 mL) was added DDQ (0.85 g, 1.98 mmol) and the mixture immediately turned green. The reaction mixture was then refluxed under nitrogen for 16 h over which time it turned pale green. After allowing to cool to room temperature, the mixture was poured into an aqueous solution of 5% NaHCO₃ (50 mL) and extracted with CH₂Cl₂ (3×100 mL). The organic extracts were combined, washed with brine (20 mL), dried (MgSO₄), filtered through Celite plug and the excess solvent removed in vacuo. The resultant oil was purified by column chromatography using 30% ethyl acetate as eluent to obtain the substituted naphthalene **14a** as an orange solid (0.39 g, 78%). Mp=85–87 °C; IR ν_{max} (cm⁻¹) 1734 (s, C=O stretch), 1582 (s, C=C stretch); ¹H NMR δ /ppm 7.89–7.85 (2H, m, 2×ArH), 7.60–7.54 (2H, m, 2×ArH), 7.51–7.38 (2H, m, 2×ArH), 6.55 (2H, s, 2' and 6'-H), 5.07 (2H, s, CH₂OAc), 3.96 (3H, s, OCH₃), 3.82 (6H, s, 2×OCH₃), 2.07 (3H, s, OAc); ¹³C NMR δ /ppm 20.9 (OAc), 56.0 (2×OCH₃), 60.9 (OCH₃), 64.7 (CH₂OAc), 107.3 (2' and 6'-C), 126.0 (2×CH), 126.2 (CH), 126.7 (CH), 127.7 (CH), 127.9 (CH), 130.8 (C), 132.6 (C), 133.0 (C), 133.2 (C), 137.3 (C), 139.3 (C), 153.0 (2×C), 170.6 (OCOCH₃); MS (EI) *m*/*z* (%): 367 (M+1, 66), 366 (M⁺, 100), 320 (39), 305 (48), 291 (33), 277 (29), 276 (28), 275 (24), 189 (23), 43 (29); HRMS calculated for C₂₂H₂₂O₅ M⁺ 366.1467, found 366.1468.

3.1.32. [1-(1-Naphthyl)naphthalen-2-yl]methyl acetate 14b. In a similar manner as described above DDQ (0.21 g, 0.91 mmol) was used to convert acetate 13b (0.20 g, 0.61 mmol) into 14b, obtained as a light yellow oil (0.19 g, 95%). IR ν_{max} (cm⁻¹) 1738 (s, C=O stretch), 1593, 1587 (m, C=C stretch); ¹H NMR δ /ppm 7.98–7.89 (4H, m, 4×ArH), 7.67–7.58 (2H, m, 2×ArH), 7.47–7.39 (3H, m, 3×ArH), 7.24–7.16 (4H, m, 4×ArH), 4.93 (1H, d, J = 12.5 Hz, one of CH₂OAc), 4.84 (1H, d, J = 12.5 Hz, one of CH₂OAc), 1.84 (3H, s, OAc); ¹³C NMR δ/ppm 20.6 (OAc), 64.7 (CH₂OAc), 125.4 (CH), 125.9 (CH), 126.1 (2×CH), 126.2 (CH), 126.3 (CH), 126.4 (CH), 126.8 (CH), 127.8 (CH), 127.9 (CH), 128.1 (CH), 128.2 (CH), 128.2 (CH), 132.0 (C), 132.8 (C), 133.1 (C), 133.2 (C), 133.6 (C), 135.4 (C), 137.4 (C), 171.0 (OCOCH₃); MS (EI) m/z (%): 327 (M+1, 51), 326 (M⁺, 97), 284 (21), 268 (20), 267 (60), 266 (85), 265 (100), 263 (27), 262 (43), 253 (40), 251 (64), 249 (21), 238 (23), 43 (19); HRMS calculated for C₂₃H₁₈O₂ M⁺ 326.1307, found 326.1307.

3.1.33. (1-Phenylnaphthalen-2-yl)methyl acetate 14c. Similarly acetate 13c (0.14 g, 0.50 mmol) afforded the arylnaphthalene 14c as light yellow oil (0.13 g, 93%) using DDQ (0.17 g, 0.75 mmol) in CH₂Cl₂ (15 mL). IR ν_{max} (cm⁻¹) 1738 (s, C=O stretch), 1597 (m, C=C stretch); ¹H NMR δ /ppm 7.88–7.83 (2H, m, 2×ArH), 7.57 (1H, d, J=8.5 Hz, ArH), 7.47–7.43 (5H, m, 5×ArH), 7.30–7.15 (3H, m, 3×ArH), 5.00 (2H, s, CH₂OAc), 2.02 (3H, s, OAc); ¹³C NMR δ /ppm) 20.9 (CH₃), 64.7 (CH₂OH), 125.9 (CH), 126.1 (CH), 126.2 (CH), 126.7 (CH), 127.6 (CH), 127.7 (CH), 127.8 (CH), 128.2 (2×CH), 130.2 (2×CH), 130.8 (C), 132.7 (C), 133.1 (C), 137.8 (C), 139.5 (C), 170.6 (OCOCH₃); MS (EI) *m*/*z* (%): 277 (M+1, 24), 276 (M⁺, 100), 234 (23), 215 (78), 202 (34); HRMS calculated for C₁₉H₁₆O₂ M⁺ 276.1150, found 276.1113.

3.1.34. [1-(*o*-Tolyl)naphthalen-2-yl]methyl acetate 14d. Similarly using DDQ (0.46 g, 1.53 mmol) in CH₂Cl₂ (30 mL) acetate 13d (0.20 g, 0.51 mmol) afforded the substituted naphthalene 14d as a light brown crystalline solid (0.20 g, 100%). Mp=86–90 °C; IR ν_{max} (cm⁻¹) 1736 (s, C=O stretch); ¹H NMR δ /ppm 7.88–7.83 (2H, m, 2×ArH), 7.58 (1H, d, *J*=8.5 Hz, ArH), 7.46–7.41 (1H, m, ArH), 7.35–7.27 (5H, m, 5×ArH), 7.13 (1H, d, *J*=7.5 Hz, ArH), 4.97 (1H, d, *J*=12.4 Hz, one of CH₂OAc), 4.95 (1H, d, *J*=12.4 Hz, one of CH₂OAc), 4.95 (1H, d, *J*=12.4 Hz, one of CH₂OAc), 3^a, 1.91 (3H, s, OAc)^a; ¹³C NMR δ /ppm 19.9 (ArCH₃)^a, 20.7 (OCOCH₃)^a, 64.7 (CH₂OAc), 125.8 (CH), 126.0 (CH), 126.1 (CH), 126.1 (CH), 126.3 (CH), 127.7 (CH), 127.8 (CH), 127.9 (CH), 129.9 (CH), 130.0 (CH), 130.7 (C), 132.2 (C), 133.1 (C), 136.9 (C), 137.1 (C), 138.7 (C), 170.9 (OCOCH₃), assignments with the same superscript may be interchanged; MS (EI) *m*/*z* (%): 291 (M+1, 30), 290 (M⁺, 85), 231 (80), 229 (89), 216 (75), 215 (100), 202 (50), 189 (22), 149 (31), 43 (71); HRMS calculated for C₂₀H₁₈O₂ M⁺ 290.1307, found 290.1307.

3.1.35. [6,7-Dimethoxy-1-(3,4,5-trimethoxyphenyl)naphthalen-2-yl]methyl acetate 20a. Using DDQ (0.48 g, 2.10 mmol) in CH_2Cl_2 (30 mL) according to the same procedure as outlined above acetate 19a (0.30 g, 0.70 mmol) gave the naphthalene 20a as yellow crystalline solid (0.22 g, 74%). Mp=150-152 °C; IR ν_{max} (cm⁻¹) 1736 (s, C=O stretch), 1625, 1583 (s, C=C stretch); ¹H NMR δ /ppm 7.64 (1H, d, J=8.4 Hz, ArH), 7.36 (1H, d, J=8.4 Hz, ArH), 7.08 (1H, s, ArH), 6.76 (1H, s, ArH), 6.48 (2H, s, 2' and 6'-H), 4.94 (2H, s, CH₂OH), 3.93 (3H, s, OCH₃), 3.88 (3H, s, OCH₃), 3.76 (6H, s, 2×OCH₃), 3.67 (3H, s, OCH₃), 1.98 (3H, s, OAc); ¹³C NMR δ/ppm 20.9 (OAc), 55.7 (OCH₃), 55.8 (OCH₃), 56.1 (2×OCH₃), 60.9 (OCH₃), 64.9 (CH₂OAc), 105.4 (CH), 106.2 (CH), 107.2 (2×CH), 124.8 (CH), 126.2 (CH), 128.2 (C), 129.1 (C), 129.2 (C), 133.6 (C), 137.2 (C), 138.1 (C), 149.5 (C), 149.6 (C), 153.1 (2×C), 170.6 (OCOCH₃); MS (EI) *m/z* (%): 427 $(M+1, 19), 426 (M^+, 70), 81 (18), 69 (41), 57 (29), 55 (23),$ 43 (27), 41 (21), 31 (23), 28 (100); HRMS calculated for $C_{24}H_{26}O_7 M^+$ 426.1679, found 426.1678.

3.1.36. [6,7-Dimethoxy-1-(1-naphthyl)naphthalen-2yl]methyl acetate 20b. Similarly acetate 19b (0.22 g, 0.57 mmol) gave the substituted arylnaphthalene 20b, as a yellow solid (0.17 g, 78%) using DDQ (0.13 g, 0.57 mmol) in CH₂Cl₂ (15 mL). Mp=110–114 °C; IR ν_{max} (cm⁻ 1736 (s, C=O stretch), 1624 (m, C=C stretch); ¹H NMR δ / ppm 7.85 (2H, t, J=7.8 Hz, $2 \times ArH$), 7.72 (1H, d, J = 8.4 Hz, ArH), 7.53–7.32 (4H, m, 4×ArH), 7.18–7.14 (2H, m, 2×ArH), 7.11 (1H, s, ArH), 6.35 (1H, s, ArH), 4.82 (1H, d, J=12.3 Hz, one of CH₂OAc), 4.69 (1H, d, J=12.3 Hz, one of CH₂OAc), 3.91 (3H, s, OCH₃), 3.36 (3H, s, OCH₃), 1.72 (3H, s, OAc); ¹³C NMR δ/ppm 20.6 (OAc), 55.4 (OCH₃), 55.8 (OCH₃), 64.9 (CH₂OAc), 105.5 (CH), 106.2 (CH), 124.9 (CH), 125.4 (CH), 125.9 (CH), 126.0 (2×CH), 126.4 (CH), 127.8 (CH), 128.2 (CH), 128.2 (CH), 128.8 (C), 129.2 (C), 130.3 (C), 132.6 (C), 133.6 (C), 135.7 (C), 136.1 (C), 149.6 (C), 149.7 (C), 170.5 (OCOCH₃); MS (EI) *m*/*z* (%): 387 (M+1, 25), 386 (M⁺) 100), 385 (26), 384 (90), 372 (32), 371 (22), 370 (27), 368 (19), 344 (20), 343 (27), 149 (25); HRMS calculated for $C_{25}H_{22}O_4 M^+$ 386.1518, found 386.1519.

3.1.37. (6,7-Dimethoxy-1-phenylnaphthalen-2-yl)methyl acetate 20c. Similarly dihydronaphthalene 19c (0.17 g, 0.56 mmol) gave the substituted naphthalene 20c as a yellow crystalline solid (0.17 g, 100%) using DDQ (0.38 g, 1.66 mmol) in CH₂Cl₂ (20 mL). Mp=75–78 °C; IR ν_{max} (cm⁻¹) 1736 (s, C=O stretch), 1624 (m, C=C stretch); ¹H NMR δ /ppm 7.62 (1H, d, *J*=8.4 Hz, ArH), 7.36–7.33 (4H, m, 4×ArH), 7.23–7.19 (2H, m, 2×ArH), 7.06 (1H, s, ArH), 6.63 (1H, s, ArH), 4.87 (2H, s, CH₂OAc), 3.90 (3H, s,

OCH₃) 3.59 (3H, s, OCH₃), 1.93 (3H, s, OAc); ¹³C NMR δ / ppm 20.9 (OAc), 55.4 (OCH₃), 55.8 (OCH₃), 64.9 (CH₂OAc), 105.4 (CH), 106.1 (CH), 124.9 (CH), 126.1 (CH), 127.5 (CH), 128.3 (2×CH), 129.1 (C), 129.1 (C), 129.9 (2×CH), 138.1 (C), 138.3 (C), 149.4 (C), 149.5 (C), 170.6 (OCOCH₃), (one quaternary carbon missing); MS (EI) *m*/*z* (%): 337 (M+1, 59), 336 (M⁺, 100), 265 (19), 246 (37), 245 (56), 215 (24), 203 (26), 202 (33), 191 (22), 189 (40), 43 (42); HRMS calculated for C₂₁H₂₀O₄ M⁺ 336.1362, found 336.1362.

3.1.38. [6,7-Dimethoxy-1-(o-tolyl)naphthalen-2-yl]methyl acetate 20d. In a similar manner as described above dihydronaphthalene 19d (0.31 g, 0.88 mmol) was converted into naphthalene 20d, which was obtained as a yellow solid (0.24 g, 78%) using DDQ (0.20 g, 0.88 mmol) in CH₂Cl₂ (20 mL). Mp=91–93 °C; IR ν_{max} (cm⁻¹) 1736 (s, C=O stretch), 1624 (m, C=C stretch); ¹H NMR δ /ppm 7.73 (1H, d, J=8.4 Hz, ArH), 7.45 (1H, d, J=8.4 Hz, ArH), 7.36-7.25 (3H, m, 3×ArH), 7.16 (1H, s, ArH), 7.16-7.14 (1H, s, ArH), 6.53 (1H, s, ArH), 4.93 (1H, d, J=12.2 Hz)one of CH₂OAc), 4.87 (1H, d, J=12.2 Hz, one of CH₂OAc), 4.00 (3H, s, OCH₃), 3.67 (3H, s, OCH₃), 2.00 (3H, s, ArCH₃), 1.94 (3H, s, OCOCH₃); ¹³C NMR δ/ppm 19.5 (ArCH₃), 20.8 (OCOCH₃), 55.5 (OCH₃), 55.8 (OCH₃), 64.9 (CH₂OAc), 104.8 (CH), 106.3 (CH), 124.9 (CH), 125.9 (CH), 126.0 (CH), 127.9 (CH), 129.0 (C), 129.1 (C), 129.9 (2×CH), 136.8 (C), 137.5 (C), 137.6 (C), 149.6 (C), 149.7 (C), 170.7 (OCOCH₃), (one quaternary carbon missing); MS (EI) m/z (%): 351 (M+1, 44), 350 (M⁺, 100), 291 (26), 290 (28), 276 (15), 275 (19), 260 (17), 259 (46), 202 (17), 189 (16), 43 (18); HRMS calculated for $C_{22}H_{22}O_4$ M⁺ 350.1518, found 350.1517.

3.1.39. [1-(3,4,5-Trimethoxyphenyl)naphthalen-2-yl]methanol 21a. To a solution of dihydronaphthalenylmethanol 12a (0.11 g, 0.34 mmol) in CH₂Cl₂ (15 mL) was added DDO and a green solution resulted. The resultant mixture was refluxed for 16 h after which time it turned dark brown. The mixture was then allowed to cool to room temperature before being neutralized with 5% NaHCO₃ (10 mL) and being extracted with CH_2Cl_2 (3×50 mL). The organic extracts were combined, washed with brine and concentrated under reduced pressure to give a brown oil. The oil was purified by column chromatography using 30% ethylacetate/hexane as an eluent to give 21a as a yellow solid (0.09 g, 82%). Mp=90–91 °C; IR ν_{max} (cm⁻¹) 3488 (s, broad, OH stretch), 1582 (s, C=C stretch); ¹H NMR $\delta/$ ppm 7.90 (1H, d, J=8.4 Hz, ArH), 7.87 (1H, d, J=8.5 Hz, ArH), 7.69 (1H, d, J=8.5 Hz, ArH), 7.54 (1H, d, J=8.3 Hz, ArH), 7.49–7.37 (2H, m, 2×ArH), 6.53 (2H, s, 2' and 6'-H), 4.61 (2H, s, CH₂OH), 3.95 (3H, s, OCH₃), 3.81 (6H, s, $2 \times \text{OCH}_3$); ¹³C NMR δ /ppm 56.1 (2×OCH₃), 60.9 (OCH₃), 63.4 (CH₂OH), 107.2 (2×CH), 125.7 (2×CH), 126.1 (CH), 126.6 (CH), 127.8 (CH), 128.0 (CH), 132.6 (C), 132.8 (C), 133.6 (C), 135.6 (C), 137.1 (C), 137.9 (C), 153.0 $(2 \times C)$; MS (EI) m/z (%): 325 (M+1, 10), 324 (M⁺, 100), 219 (9), 165 (7), 18 (7); HRMS calculated for $C_{20}H_{20}O_4$ M⁺ 324.1361, found 324.1351.

3.1.40. [1-(1-Naphthylnaphthalen-2-yl]methanol 21b. In a similar manner to that described above DDQ (0.48 g, 2.09 mmol) was used to convert dihydronaphthalene 12b

(0.40 g, 1.39 mmol) into **21b**, a brown crystalline solid (0.31 g, 79%). Mp=116–119 °C; IR ν_{max} (cm⁻¹) 3386 (s, broad, OH stretch), 1592, 1568 (m, C=C stretch); ¹H NMR δ /ppm 7.89–7.79 (4H, m, 4×ArH), 7.67 (1H, d, *J*= 8.5 Hz, ArH), 7.51–7.46 (1H, m, ArH), 7.38–7.28 (3H, m, 3×ArH), 7.17–7.06 (4H, m, 4×ArH), 4.32 (1H, d, *J*= 13.0 Hz, one of CH₂OH), 4.27 (1H, d, *J*=13.0 Hz, one of CH₂OH); ¹³C NMR δ /ppm 63.3 (CH₂OH), 125.4 (CH), 125.7 (2×CH), 125.8 (CH), 126.0 (CH), 126.1 (CH), 126.4 (CH), 126.9 (CH), 132.7 (C), 132.8 (C), 133.0 (C), 133.6 (C), 135.5 (C), 135.7 (C), 136.7 (C); MS (EI) *m/z* (%): 285 (M+ 1, 23), 284 (M⁺, 100), 265 (32), 128 (18); HRMS calculated for C₂₁H₁₆O M⁺ 284.1201, found 284.1202.

3.1.41. (1-PhenyInaphthalen-2-yI)methanol 21c. Similarly dihydronaphthyl alcohol 12c (0.26 g, 1.10 mmol) afforded naphthalene 21c as a light yellow oil (0.20 g, 78%) using DDQ (0.25 g, 1.10 mmol) in CH₂Cl₂ (25 mL). IR ν_{max} (cm⁻¹) 3420 (m, broad, OH stretch), 1596 (s, C=C stretch); ¹H NMR δ /ppm 7.89 (1H, d, J=8.4 Hz, ArH), 7.87 (1H, d, J=8.4 Hz, ArH), 7.68 (1H, d, J=8.5 Hz, ArH), 7.49–7.41 (5H, m, 5×ArH), 7.37–7.34 (3H, m, 3×ArH), 4.56 (2H, s, CH₂OH); ¹³C NMR δ /ppm 63.3 (CH₂OH), 125.6 (CH), 125.7 (CH), 125.9 (CH), 126.5 (CH), 127.4 (CH), 127.7 (CH), 127.9 (CH), 128.3 (2×CH), 130.0 (2×CH), 132.6 (C), 132.8 (C), 135.5 (C), 137.8 (C), 138.1 (C); MS (EI) *m*/*z* (%): 235 (M+1, 28), 234 (M⁺, 100), 215 (50), 205 (46), 202 (35), 157 (14), 129 (22), 108 (16); HRMS calculated for C₁₇H₁₄O M⁺ 234.1045, found 234.1046.

3.1.42. 1-Bromonaphthalene-2-carbaldehyde 22. 1-Bromo-3,4-dihydronaphthalene-2-carbaldehyde (0.45 g, 1.898 mmol), selenium powder (0.30 g, 5.694 mmol) and dimethyl sulfoxide (0.5 mL) were slowly heated to 170 °C. The reaction mixture was heated at the same temperature for 5 min where sputtering took place. After sputtering had ceased, the mixture was allowed to cool to room temperature before being filtered and washed with an excess amount of CH₂Cl₂. The excess solvent was removed on a rotary evaporator to obtain a black oil that was purified by column chromatography using 5% ethyl acetate/hexane as eluant to give the desired product 22 as a bright yellow solid (0.31 g, 69%). Mp=106-108 °C; IR ν_{max} (cm⁻¹) 1687 (s, C=O stretch), 1619, 1597 (s, C=C stretch); ¹H NMR δ/ppm 10.67 (1H, s, CHO), 8.53-8.50 (1H, m, ArH), 7.95–7.84 (3H, m, 3×ArH), 7.72–7.67 (2H, m, 2×ArH); ¹³C NMR δ/ppm 124.1 (CH), 128.1 (CH), 128.2 (CH), 128.3 (CH), 128.4 (CH), 128.5 (C), 129.7 (CH), 131.1 (C), 132.1 (C), 137.2 (C), 192.8 (CHO); MS (EI) m/z (%): 235 (M⁺⁸¹Br, 99), 233 (M⁺⁷⁹Br, 100), 206 (28), 127 (35), 126 (89), 63 (15); HRMS calculated for $C_{11}H_7O^{79}Br M^+$ 233.9680, found 233.9708.

3.1.43. 6-Methoxy-1-bromo-3,4-dihydronaphthalene-2carbaldehyde 23. Dry DMF (8.0 mL, 102.1 mmol) in dry CH₂Cl₂ (60.0 mL) was cooled to 0 °C and phosphorus tribromide (8.4 mL, 88.52 mmol) was added drop-wise. The mixture was stirred at 0 °C for 1 h and a cream white suspension formed. A solution of 6,7-dimethoxy- α -tetralone (6.00 g, 34.05 mmol) in dry CH₂Cl₂ (50 mL) was added and the mixture was heated under reflux for 16 h. After cooling to 0 °C, aqueous NaHCO₃ was added slowly until the effervescence had subsided. Extraction of the organic material into CH_2Cl_2 (3×100 mL) was followed by drying the organic layer (MgSO₄). The solution was filtered through a Celite plug and evaporation of the excess solvent resulted into brown oil. Column chromatography eluting with 30% ethyl acetate/hexane gave the product 23 as a yellow solid (7.79 g, 86%). Mp = 61–62 °C; IR ν_{max} (cm⁻¹) 1659 (s, C=O stretch), 1606, 1586, 1552 (s, C=C stretch); ¹H NMR δ/ppm 10.20 (1H, s, CHO), 7.83 (1H, d, J = 8.7 Hz, 8-H), 6.82 (1H, dd, J=8.7, 2.6 Hz, 7-H), 6.72 (1H, d, J=2.5 Hz, 5-H), 3.86 (3H, s, OMe), 2.80 (2H, dd, J=8.4, 7.2 Hz, CH₂), 2.60 (2H, dd, J = 8.7, 6.0 Hz, CH₂); ¹³C NMR δ/ppm 22.7 (CH₂), 27.7 (CH₂), 55.4 (OCH₃), 112.1 (CH), 113.3 (CH), 125.9 (C), 130.7 (CH), 132.1 (C), 139.0 (C), 141.2 (C), 162.0 (C), 192.9 (CHO); MS (EI) m/z (%): 267 (M⁺⁸¹Br, 80), 265 (M⁺⁷⁹Br, 83), 236 (28), 187 (46), 159 (97), 158 (100), 144 (59), 128 (41), 115 (81); HRMS calculated for $C_{12}H_{11}O_2^{79}Br M^+$ 265.9942, found 265.9936.

3.1.44. 6-Methoxy-1-bromonaphthalene-2-carbaldehyde

24. Using the same procedure as described above, 6-methoxy-1-bromo-3,4-dihydronaphthalene-2-carbaldehyde 23 (3.98 g, 14.90 mmol) was converted into 7-methoxy-1-bromonaphthalene-2-carbaldehyde 24 in the presence of selenium powder (2.30 g, 29.80 mmol) and dimethyl sulfoxide (2 mL). The product was obtained as a light brown solid (2.85 g, 72%). Mp = 123–126 °C; IR ν_{max} (cm^{-1}) 1682 (s, C=O stretch), 1620 (s, C=C stretch); ¹H NMR δ/ppm 10.58 (1H, s, CHO), 8.36 (1H, d, J=9.4 Hz, 8-H), 7.87 (1H, d, J=8.7 Hz, 3- or 4-H), 7.68 (1H, d, J=8.7 Hz, 3- or 4-H), 7.28 (1H, dd, J=9.4, 2.5 Hz, 7-H), 7.11 (1H, d, J = 2.5 Hz, 5-H), 3.96 (3H, s, OMe); ¹³C NMR δ/ppm 55.6 (OCH₃), 106.4 (CH), 120.7 (CH), 124.7 (CH), 126.9 (CH) 127.2 (C), 129.4 (C), 129.8 (CH), 130.4 (C), 139.0 (C), 160.6 (C), 192.5 (CHO); MS (EI) *m*/*z* (%): 265 (M⁺⁸¹Br, 47), 263 (M⁺⁷⁹Br, 46), 261 (100), 202 (17), 156 (16), 113 (22), 73 (17); HRMS calculated for $C_{12}H_9O_2^{79}Br$ M⁺ 263.9786, found 263.9750.

3.1.45. 1-(3,4,5-Trimethoxyphenyl)-naphthalene-2-car**baldehyde 25a.** To [Pd(PPh₃)₄] (0.14 g, 0.127 mmol) was added deoxygenated solutions of 22 (0.30 g, 1.276 mmol) in DME (10 mL) and 3,4,5-trimethoxy-1phenylboronic acid **10a** (0.38 g, 1.914 mmol) in ethanol (5 mL). This was followed by a deoxygenated solution of aqueous sodium carbonate (1.06 g, 10.85 mmol in 5.0 mL water). The resultant mixture was refluxed under nitrogen for 46 h over which time it turned deep red. After allowing to cool to room temperature, the mixture was quenched with water (10 mL) and the organic material extracted with CH_2Cl_2 (3×25 mL). The resultant organic extracts were combined, dried (MgSO₄), filtered through a Celite plug and the excess solvent removed using a rotary evaporator. The subsequent oil was purified by column chromatography using 30% ethyl acetate/hexane as the eluent to afford the desired product 25a as a yellow solid (0.40 g, 94%). Mp=89–92 °C; IR v_{max} (cm^{-1}) 1694 (s, C=O stretch), 1626, 1597 (s, C=C stretch); ¹H NMR δ/ppm 9.96 (1H, s, CHO), 8.05 (1H, d, J=8.6 Hz, ArH), 7.93 (2H, d, J=8.4 Hz, 2×ArH), 7.76 (1H, d, J=8.2 Hz, ArH), 7.65–7.61 (1H, m, ArH), 7.52-7.48 (1H, m, ArH), 6.63 (2H, s, 2' and 6'-H), 3.85 (9H, s, $3 \times OCH_3$); ¹³C NMR δ /ppm 56.2 (2×OCH₃), 60.8

 $\begin{array}{l} ({\rm OCH}_3), 108.2 \ (2\times {\rm CH}), 121.9 \ ({\rm CH}), 123.5 \ ({\rm C}), 126.9 \ ({\rm CH}), \\ 127.6 \ ({\rm CH}), 128.1 \ ({\rm CH}), 128.3 \ ({\rm CH}), 128.7 \ ({\rm CH}), 130.6 \ ({\rm C}), \\ 131.1 \ ({\rm C}), 132.4 \ ({\rm C}), 136.0 \ ({\rm C}), 146.3 \ ({\rm C}), 152.9 \ (2\times {\rm C}), 192.7 \ ({\rm CHO}); {\rm MS} \ ({\rm EI}) \ m/z \ (\%): 323 \ ({\rm M}+1, 22), 322 \ ({\rm M}^+, 100), 279 \ (63), 219 \ (15), 165 \ (24); {\rm HRMS} \ {\rm calculated} \ {\rm for} \ {\rm C}_{20} {\rm H}_{18} {\rm O}_4 \ {\rm M}^+ \ 322.1205, \ {\rm found} \ 322.1186. \end{array}$

3.1.46. 1-(1-Naphthyl)-naphthalene-2-carbaldehyde 25b. Using the same procedure as described above, 22 (0.30 g,1.276 mmol) was reacted with 1-naphthylboronic acid 10b (0.31 g, 1.914 mmol) under Suzuki coupling conditions to give 25b as a yellow crystalline solid (0.32 g, 89%). Mp= 112–114 °C; IR ν_{max} (cm⁻¹) 1687 (s, C=O stretch), 1619 and 1593 (m, C=C stretch); ¹H NMR δ /ppm 9.68 (1H, s, CHO), 8.15 (1H, d, J = 8.6 Hz, ArH), 8.02–7.92 (4H, m, 4× ArH), 7.62-7.54 (2H, m, 2×ArH), 7.49-7.44 (2H, m, 2×ArH), 7.36 (1H, d, J=8.1 Hz, ArH), 7.31-7.25 (2H, m, 2×ArH), 7.20 (1H, d, J=8.4 Hz, ArH); ¹³C NMR δ /ppm 122.1 (CH), 125.0 (CH), 126.2 (CH), 126.3 (CH), 126.8 (CH), 126.9 (CH), 127.7 (CH), 128.2 (CH), 128.3 (CH), 128.6 (CH), 128.8 (CH), 128.9 (CH), 129.1 (CH), 132.1 (C), 132.9 (C), 133.0 (C), 133.3 (C), 133.5 (C), 136.1 (C), 144.8 (C), 192.4 (CHO); MS (EI) *m*/*z* (%): 283 (M+1, 23), 282 $(M^+, 100), 281 (81), 265 (26), 253 (86), 252 (97), 126 (35),$ 113 (15); HRMS calculated for $C_{21}H_{14}O M^+$ 282.1045, found 282.1035.

3.1.47. 1-PhenyInaphthalene-2-carbaldehyde 25c. Substituted naphthalene **25c** was obtained as a light yellow oil (0.26 g, 87%) from the Suzuki coupling of bromonaphthalene carbaldehyde **22** (0.30 g, 1.276 mmol) and 1-phenylboronic acid (0.22 g, 1.914 mmol) using the same procedure as outlined above. ¹H NMR δ /ppm 9.89 (1H, s, CHO), 8.06 (1H, d, *J*=8.6 Hz, ArH), 7.92 (2H, d, *J*=9.7 Hz, 2×ArH) 7.67–7.58 (2H, m, 2×ArH), 7.52–7.51 (3H, m, 3×ArH), 7.47–7.31 (3H, m, 3×ArH); ¹³C NMR δ /ppm 122.1 (CH), 126.8 (CH), 127.7 (CH), 128.2 (CH), 128.2 (2×CH), 128.3 (CH), 128.4 (CH), 128.7 (CH), 130.9 (2×CH), 131.2 (C), 132.4 (C), 135.2 (C), 136.1 (C), 146.5 (C), 192.6 (CHO); MS (EI) *m/z* (%): 233 (M+1, 18), 232 (M⁺, 100), 202 (64), 101 (18); HRMS calculated for C₁₇H₁₂O M⁺ 232.0888, found 232.0865.

3.1.48. 1-(*o*-Tolyl)naphthalene-2-carbaldehyde 25d. Using the same procedure as outlined above, tolylnaphthalene carbaldehyde 25d was synthesized as a yellow crystalline solid (0.29 g, 94%) from the Suzuki coupling of carbaldehyde 22 (0.30 g, 1.276 mmol) and o-tolylboronic acid **10d**. Mp=60–61 °C; IR ν_{max} (cm⁻¹) 1687 (s, C=O stretch), 1626, 1618, 1596 (s, C=C stretch); ¹H NMR δ / ppm 9.82 (1H, s, CHO), 8.07 (1H, d, J=8.6 Hz, ArH), 7.93 $(2H, d, J=9.1 \text{ Hz}, 2 \times \text{ArH}), 7.64-7.59 (1H, m, ArH), 7.48-$ 7.31 (5H, m, 5×ArH), 7.24 (1H, d, *J*=6.6 Hz, ArH), 1.96 (3H, s, ArCH₃); ¹³C NMR δ/ppm 20.0 (ArCH₃), 122.0 (CH), 125.7 (CH), 126.9 (CH), 127.2 (CH), 128.3 (CH), 128.4 (CH), 128.6 (CH), 128.8 (CH) 130.1 (CH), 130.9 (CH), 131.0 (C), 132.1 (C), 134.8 (C), 136.2 (C), 137.3 (C), 146.3 (C), 192.6 (CHO); MS (EI) *m*/*z* (%): 246 (M⁺, 100), 231 (38), 218 (88), 202 (43), 130 (39), 99 (10), 68 (74); HRMS calculated for $C_{18}H_{14}O$ M⁺ 246.1045, found 246.1049.

3.1.49. 1-(3,4,5-Trimethoxyphenyl)-6-methoxynaphthalene-2-carbaldehyde 26a. In the same way as outlined above, 7-methoxy-1-bromonaphthalene 24 (0.30 g, 1.132 mmol) and 3,4,5-trimethoxy-1-phenylboronic acid 10a (0.36 g, 1.697 mmol) were subjected to Suzuki coupling reaction conditions to give the desired product **26a**, as a light vellow crystalline solid (0.32 g, 80%). Mp = 132–134 °C; IR ν_{max} (cm⁻¹) 1690 (s, C=O stretch), 1623, 1599 (s, C=C stretch); ¹H NMR δ /ppm 9.89 (1H, s, CHO), 8.02 (1H, d, J=8.6 Hz, 4-H), 7.80 (1H, d, J=8.6 Hz, 3-H), 7.65 (1H, d, J=9.2 Hz, 8-H), 7.21 (1H, d, J=2.5 Hz, 5-H), 7.13 (1H, dd, J = 9.2, 2.5 Hz, 7-H), 6.61 (2H, s, 2' and 6'-H), 3.96 (6H, s, 2×OCH₃), 3.84 (6H, s, 2×OCH₃); ¹³C NMR δ/ppm 55.4 (OCH₃), 56.2 (2×OCH₃), 61.0 (OCH₃), 106.3 (CH), 108.2 (2×CH), 119.5 (CH), 122.7 (CH), 127.0 (CH), 127.4 (C), 129.3 (CH), 129.5 (C), 130.8 (C), 137.7 (C), 137.9 (C), 146.4 (C), 152.9 (2×C), 159.9 (C), 192.4 (CHO); MS (EI) *m/z* (%): 352 (M⁺, 57), 309 (23), 304 (25), 246 (100), 231 (36), 215 (37), 202 (35), 185 (30), 115 (19); HRMS calculated for $C_{21}H_{20}O_5$ M⁺ 352.1311, found 352.1341.

3.1.50. 6-Methoxy-1-(1-naphthyl)naphthalene-2-carbaldehyde 26b. Using the same procedure as described above, bromonaphthalene carbaldehyde 24 (0.30 g, 1.132 mmol) and 1-naphthylboronic acid 10b (0.29 g, 1.697 mmol) were coupled to give biaryl 26b, as a yellow solid (0.26 g, 74%). Mp=181–184 °C; IR ν_{max} (cm⁻¹) 1676 (s, C=O stretch), 1619 (m, C=C stretch); ¹H NMR δ/ppm 9.61 (1H, s, CHO), 8.12 (1H, d, J=8.6 Hz, ArH), 8.01 (1H, d, J=8.3 Hz, ArH), 7.96 (1H, d, J=8.3 Hz, ArH), 7.89 (1H, d, J=8.7 Hz, ArH), 7.63-7.58 (1H, m, ArH), 7.50-7.46 (2H, m, 2×ArH), 7.32-7.19 (4H, m, $4 \times \text{ArH}$), 6.96 (1H, dd, J = 9.2, 2.6 Hz, 7-H), 3.93 (3H, s, OCH₃); ¹³C NMR δ/ppm 55.4 (OCH₃), 106.3 (CH), 119.5 (CH), 122.8 (CH), 124.9 (CH), 126.1 (CH), 126.2 (CH), 126.7 (CH), 127.3 (CH), 128.1 (C), 128.2 (CH), 128.8 (CH), 129.0 (CH), 129.4 (CH), 130.4 (C), 133.0 (C), 133.2 (C), 133.4 (C), 138.0 (C), 144.9 (C), 159.9 (C), 192.2 (CHO); MS (EI) m/z (%): 313 (M+1, 23), 312 (M⁺, 100), 239 (33), 218 (43), 144 (13), 130 (19), 68 (33); HRMS calculated for $C_{22}H_{16}O_2$ M⁺ 312.1150, found 312.1174.

3.1.51. 6-Methoxy-1-phenylnaphthalene-2-carbaldehyde **26c.** In the same manner as detailed above, carbaldehyde **26c** was synthesized as a thick yellow oil (0.27 g, 90%) from the Suzuki coupling of carbaldehyde 24 (0.30 g, 1.132 mmol) and phenylboronic **10c** (0.20 g, 1.697 mmol). IR ν_{max} (cm⁻¹) 1681 (s, C=O stretch), 1616, 1573 (s, C=C stretch); ¹H NMR δ/ppm 9.81 (1H, s, CHO), 8.04 (1H, d, J=8.7 Hz, 4-H), 7.79 (1H, d, J=8.7 Hz, 3-H) 7.51–7.49 (4H, m, 4×ArH), 7.38–7.35 (2H, m, 2×ArH), 7.21–7.19 (1H, m, ArH), 7.08 (1H, dd, J=9.3, 2.6 Hz, 7-H), 6.92–6.83 (1H, m, ArH), 3.93 (3H, s, OCH₃); ¹³C NMR δ /ppm 55.4 (OCH₃), 106.3 (CH), 119.3 (CH), 120.3 (C), 122.8 (CH), 127.0 (CH), 127.4 (C), 128.1 (2×CH) 129.3 (CH), 129.5 (CH), 130.8 (2× CH), 135.2 (C), 137.9 (C), 146.7 (C), 159.9 (C), 192.5 (CHO); MS (EI) *m*/*z* (%): 263 (M+1, 33), 262 (M⁺, 40), 218 (100), 130 (61), 99 (11), 68 (82); HRMS calculated for $C_{18}H_{14}O_2$ M⁺ 262.0993, found 262.0991.

3.1.52. 6-Methoxy-1-(*o*-tolyl)naphthalene-2-carbaldehyde 26d. 1-Bromo-7-methoxynaphthalene-2-carbaldehyde 24 (0.30 g, 1.132 mmol) and o-tolylboronic 10d (0.22 g, 1.697 mmol) were coupled in the same manner as described above to give the desired product **26d**, as a light yellow oil (0.22 g, 71%). IR ν_{max} (cm⁻¹) 1674 (s, C=O stretch), 1618 (s, C=C stretch); ¹H NMR δ /ppm 9.74 (1H, s, CHO), 8.04 (1H, d, J = 8.6 Hz, 4-H), 7.80 (1H, d, J = 8.6 Hz), 3-H), 7.44–7.29 (4H, m, 4×ArH), 7.25–7.21 (2H, m, 2× ArH), 7.07 (1H, dd, J=9.2, 2.5 Hz, 7-H), 3.95 (3H, s, OCH₃), 1.96 (3H, s, ArCH₃); ¹³C NMR δ/ppm 19.9 (ArCH₃), 55.4 (OCH₃), 106.4 (CH), 119.4 (CH), 122.8 (CH), 125.6 (CH), 126.9 (CH), 128.5 (CH), 128.9 (CH) 129.3 (C), 130.0 (CH), 130.7 (CH), 130.9 (C), 134.9 (C), 137.2 (C), 138.0 (C), 146.3 (C), 160.0 (C), 192.3 (CHO); MS (EI) *m*/*z* (%): 277 (M+1, 21), 276 (M⁺, 100), 261 (32), 245 (16), 215 (22), 202 (24); HRMS calculated for $C_{19}H_{16}O_2 M^+$ 276.1150, found 276.1156.

3.1.53. [1-(3,4,5-Trimethoxyphenyl)naphthalen-2-yl]methanol 21a. To a solution of carbaldehyde 25a (0.17 g, 0.527 mmol) in ethanol (5 mL) was added NaBH₄ (0.03 g, 0.659 mmol). The reaction mixture was stirred at room temperature for 5 min after which time it turned cream white. The mixture was quenched with water (5 mL) before being extracted with CH_2Cl_2 (3×15 mL). The organic extracts were combined, dried (MgSO₄), and then filtered through a Celite plug and concentrated in vacuo. The subsequent colourless oil was purified by column chromatography using 30% ethyl acetate/hexane as eluent to afford 21a as light yellow crystalline solid (0.14 g, 82%) with identical spectroscopic data to that described previously.

3.1.54. [1-(1-Naphthyl)naphthalen-2-yl]methanol 21b. In the same manner as outlined above, carbaldehyde 25b (0.30 g, 1.062 mmol) was converted to a biaryl alcohol 21b, as a brown solid (0.28 g, 93%) using sodium borohydride (0.05 g, 1.328 mmol) with identical spectroscopic data to that described previously.

3.1.55. (1-Phenylnaphthalen-2-yl)methanol 21c. Using sodium borohydride (0.05 g, 1.238 mmol) in the manner as outlined above, phenylnaphthyl carbaldehyde 25c (0.23 g, 0.990 mmol) was converted into alcohol 21c, as a yellow sticky oil (0.21 g, 91%) with identical spectroscopic data to that described previously.

3.1.56. [1-(*o*-Tolyl)naphthalen-2-yl]methanol 21d. The desired product 21d, was synthesized as a thick yellow oil (0.19 g, 95%) from carbaldehyde 25d (0.20 g, 0.812 mmol) using sodium borohydride (0.04 g, 1.015 mmol) in the same way as described above. IR ν_{max} (cm⁻¹) 3408 (s, broad, OH stretch), 1621, 1596, 1572 (s, C=C stretch); ¹H NMR δ / ppm 7.90 (1H, d, J=8.4 Hz, ArH), 7.87 (1H, d, J=7.5 Hz, ArH), 7.70 (1H, d, J=8.4 Hz, ArH), 7.48–7.43 (1H, m, ArH), 7.35–7.24 (5H, m, 5×ArH), 7.14 (1H, d, J=7.3 Hz, ArH), 4.48 (2H, s, CH₂OH), 1.91 (3H, s, ArCH₃); ¹³C NMR δ /ppm 19.7 (ArCH₃), 63.4 (CH₂OH), 125.7 (2×CH), 125.9 (CH), 126.0 (CH), 126.1 (CH), 127.9 (2×CH), 128.0 (CH), 130.0 (CH), 130.1 (CH), 132.2 (C), 132.9 (C), 135.4 (C), 136.9 (C), 137.1 (C), 137.6 (C); MS (EI) *m*/*z* (%): 248 (M⁺, 60), 230 (100), 218 (20), 215 (69), 202 (34), 82 (19);

HRMS calculated for $C_{18}H_{16}O$ M⁺ 248.1201, found 248.1248.

3.1.57. [6-Methoxy-1-(3,4,5-trimethoxyphenyl)naphthalen-2-yl]methanol 27a. Using the same procedure as described above, carbaldehyde 26a (0.18 g, 0.511 mmol) in ethanol (5 mL) was converted into the alcohol 27a produced as white flakes (0.16 g, 89%) using sodium borohydride (0.02 g, 0.638 mmol). Mp=163-164 °C; IR v_{max} (cm⁻¹), 1690 (s, C=O stretch), 1623 (s, C=C stretch); ¹H NMR δ /ppm 7.79 (1H, d, J=8.5 Hz, 4-H), 7.63 (1H, d, J=8.5 Hz, 3-H), 7.44 (1H, d, J=9.2 Hz, 8-H), 7.17 (1H, d, J=2.5 Hz, 5-H), 7.06 (1H, dd, J=9.2, 2.6 Hz, 7-H), 6.52 (2H, s, 2' and 6'-H), 4.58 (2H, s, CH₂OH), 3.95 (3H, s, OCH₃), 3.92 (3H, s, OCH₃), 3.92 (6H, s, $2 \times OCH_3$); ¹³C NMR δ /ppm 55.3 (OCH₃), 56.1 (2×OCH₃), 60.9 (OCH₃), 63.4 (CH₂OH), 105.7 (CH), 107.1 (2×CH), 118.7 (CH), 126.5 (CH), 126.8 (CH), 128.0 (C), 128.2 (CH), 133.3 (C), 133.7 (C), 134.1 (C), 137.1 (C), 138.0 (C), 153.1 (2×C), 157.5 (C); MS (EI) m/z (%): 354 (M⁺, 42), 304 (100), 264 (23), 213 (35), 175 (21), 152 (11); HRMS calculated for $C_{21}H_{22}O5 M^+$ 354.1467, found 354.1448.

3.1.58. [6-Methoxy-1-(1-naphthyl)naphthalen-2-yl]methanol 27b. Sodium borohydride (0.03 g, 0.880 mmol) was used as explained above to convert carbaldehyde 26b (0.22 g, 0.704 mmol) in ethanol (8 mL) into the alcohol 27b, as a light brown solid (0.21 g, 95%). Mp=142-143 °C; IR ν_{max} (cm⁻¹) 3366 (s, broad, OH stretch), 1625, 1598, 1579 (m, C=C stretch); ¹H NMR δ/ppm 7.96–7.92 $(2H, m, 2 \times ArH)$, 7.87 (1H, d, J=8.5 Hz, ArH), 7.73 (1H, d, J=8.5 Hz, ArH), 7.59 (1H, d, J=7.1 Hz, ArH), 7.57 (1H, d, J=8.2 Hz, ArH), 7.48-7.43 (1H, m, ArH), 7.39 (1H, d, J=7.0 Hz, ArH), 7.28–7.18 (3H, m, 3× ArH), 7.07 (1H, d, J=9.2 Hz, 8-H), 6.90 (1H, dd, J=9.2, 2.5 Hz, 7-H), 4.37 (2H, s, CH₂OH), 3.91 (3H, s, OCH₃); ¹³C NMR δ/ppm 55.3 (OCH₃), 63.4 (CH₂OH), 105.8 (CH), 118.7 (CH), 125.4 (CH) 125.8 (CH), 126.0 (CH), 126.4 (CH), 126.6 (CH), 127.1 (CH), 127.8 (CH), 128.0 (CH), 128.2 (CH), 128.3 (CH), 128.5 (C), 132.8 (C), 133.6 (C), 134.2 (C), 134.5 (C), 135.8 (C), 135.9 (C), 157.5 (C); MS (EI) m/z (%): 315 (M+1, 24), 314 (M⁺, 100), 252 (16), 239 (17), 218 (39), 130 (14), 68 (28); HRMS calculated for $C_{22}H_{18}O_2$ M⁺ 314.1307, found 314.1352.

3.1.59. (6-Methoxy-1-phenylnaphthalen-2-yl)methanol **27c.** Carbaldehyde **26c** (0.18 g, 0.686 mmol) in ethanol (5 mL) was converted into the alcohol **27c**, as a thick yellow oil (0.18 g, 100%) using sodium borohydride (0.03 g, 0.858 mmol) in the same manner as outlined above. IR ν_{max} (cm⁻¹) 3385 (s, broad, OH stretch), 1625, 1598, 1575 (s, C=C stretch); ¹H NMR δ /ppm 7.70 (1H, d, J=8.4 Hz, 4-H), 7.55 (1H, d, J=8.4 Hz, 3-H), 7.46–7.36 (4H, m, 4×ArH), 7.24–7.09 (4H, m, 4×ArH), 6.94 (1H, dd, J=9.2, 2.5 Hz, 7-H), 4.44 (2H, s, CH₂OH), 3.84 (3H, s, OCH₃); ¹³C NMR δ /ppm 55.3 (OCH₃), 63.4 (CH₂OH), 105.8 (CH), 118.6 (CH), 126.6 (CH), 126.8 (CH), 127.4 (CH), 128.2 (CH), 128.3 (2×CH), 130.1 (2×CH), 130.9 (C), 133.4 (C), 134.2 (C), 138.1 (C), 138.2 (C), 157.5 (C); MS (EI) m/z (%): 264 (M⁺, 100), 235 (26), 202 (24), 159 (12), 94 (32), 82 (85); HRMS calculated for $C_{18}H_{16}O_2\ M^+$ 264.1150, found 264.1146.

3.1.60. [6-Methoxy-1-(o-tolyl)naphthalen-2-yl]methanol 27d. In the same way as described above, sodium borohydride (0.02 g, 0.678 mmol) was used to convert carbaldehyde **26d** (0.15 g, 0.543 mmol) in ethanol (5 mL) into the alcohol 27d, produced as a light yellow oil (0.14 g, 93%). IR ν_{max} (cm⁻¹) 3405 (s, broad, OH stretch), 1625, 1598, 1576 (s, C=C stretch); ¹H NMR δ /ppm 7.78 (1H, d, J = 8.4 Hz, 4-H), 7.64 (1H, d, J = 8.4 Hz, 3-H), 7.36–7.24 (3H, m, 3×ArH), 7.18–7.12 (3H, m, 3×ArH), 7.00 (1H, dd, J=9.2, 2.6 Hz, 7-H), 4.45 (2H, s, CH₂OH), 3.91 (3H, s, OCH₃), 1.91 (3H, s, ArCH₃); ¹³C NMR δ/ppm 19.7 (ArCH₃), 55.3 (OCH₃), 63.3 (CH₂OH), 105.9 (CH), 118.7 (CH), 125.8 (CH), 126.5 (CH), 126.7 (CH), 127.7 (CH), 127.8 (CH), 129.9 (CH), 130.0 (CH), 133.2 (C), 134.2 (C), 136.9 (C), 137.2 (C), 137.7 (C), 157.5 (C) (one quaternary carbon missing); MS (EI) *m/z* (%): 278 (M⁺, 19), 260 (14), 129 (15), 108 (43), 84 (63), 82 (100), 46 (20); HRMS calculated for $C_{19}H_{18}O_2$ M⁺ 278.1306, found 278.1297.

Acknowledgements

This work was supported by the National Research Foundation (NRF, GUN 2053652), Pretoria, and the University of the Witwatersrand (University and Science Faculty Research Councils). Dr. W. A. L. van Otterlo is thanked for many helpful discussions. Dr. E. M. Mmutlane is thanked for helping with some of the initial experimentation. We also gratefully acknowledge the Mellon Postgraduate Mentoring Programme (sponsored by the Andrew W. Mellon Foundation) for generous funding for Mr. S. S. Moleele. Mr. R. Mampa and Mr. T. van der Merwe are also thanked for providing the NMR and MS spectroscopy services, respectively.

References and notes

- Bringmann, G.; Mortimer, A. J. P.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem., Int. Ed. 2005, 44, 5384–5427.
- 2. Meyers, A. I.; Willemsen, J. J. Chem. Commun. 1997, 1573–1574.
- (a) Hangeland, J. J.; Friends, T. J.; Doweyko, A. M.; Mellström, K.; Sandberg, J.; Grynfarb, M.; Ryono, D. E. *Bioorg. Med. Chem. Lett.* **2005**, *15*, 4579–4584. (b) Minutolo, F.; Sala, G.; Bagnacani, A.; Bertini, S.; Carboni, I.; Placanica, G.; Prota, G.; Rapposelli, S.; Sacchi, N.; Macchia, M.; Ghidoni, R. *J. Med. Chem.* **2005**, *48*, 6783–6786.
- 4. Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40-73.
- Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem. 2001, 66, 7931–7944.
- Imbos, R.; Brilman, M. H. G.; Pineschi, M.; Feringa, B. L. Org. Lett. 1999, 1, 623–625.
- 7. Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002, 2187-2210.
- Shibasaki, M.; Kanai, M.; Funabashi, K. Chem. Commun. 2002, 1989–1999.

- Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 977–991.
- Suzuki, A. In *Metal-catalyzed Cross-coupling Reactions*; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998; pp 49–97.
- 11. Suzuki, A. J. Organomet. Chem. 1999, 576, 147-168.
- 12. Stanforth, S. P. Tetrahedron 1998, 54, 263-303.
- 13. de Koning, C. B.; Rousseau, A. L.; van Otterlon, W. A. L. *Tetrahedron* **2003**, *59*, 7–36.
- 14. Yin, J.; Buchwald, S. L. J. Am. Chem. Soc 2000, 122, 12051–12052.
- (a) de Koning, C. B.; Michael, J. P.; Rousseau, A. L. J. Chem. Soc., Perkin Trans. 1 2000, 787–797. (b) de Koning, C. B.; Michael, J. P.; van Otterlo, W. A. L. J. Chem. Soc., Perkin Trans. 1 2000, 799–811.
- Cordero-Vargas, A.; Pérez-Martín, I.; Quiclet-Sire, B.; Zard, S. Z. Org. Biomol. Chem. 2004, 3018–3025.
- 17. Gilchrist, T. L.; Healy, M. A. M. Tetrahedron 1993, 49, 2543–2556.
- 18. Gilchrist, T. L.; Summersell, R. J. J. Chem. Soc., Perkin Trans. *1* **1988**, 2595–2602.
- 19. Hesse, S.; Kirsch, G. Synthesis 2001, 755-758.